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FINITENESS FOR ACTIONS OF CONTINUOUS 

GROUPS 

BY 

CAROLINE SERIES* 

ABSTRACT 

We prove the Rohlin tower theorem for free measure preserving actions of 
locally compact second countable solvable groups and almost connected 
amenable groups. This theorem was known for l.c.s.c, abelian groups and was 
recently extended by Ornstein and Weiss to discrete solvable groups. We extend 
their methods to the continuous case, using the structure theory of the class of 
groups under consideration. As a corollary we obtain that free actions of such 
groups generate hyperfinite equivalence relations. 

Introduction 

Let  T be an aperiodic measure  preserving au tomorph i sm of a probabi l i ty  

space X. The  Rohl in  tower  t heo rem states that for any positive integer n and any 

e > 0 there is a Borel  set E C_ X such that the sets E ,  T E ,  �9 �9 �9 T " E  are disjoint 

and fill X to within e. This result is of crucial impor tance  for  two results: D y e ' s  

theorem [2], that  is the hyperfiniteness of  the equivalence  relat ions genera ted  by 

aperiodic t ransformat ions;  and the i somorphism theo rem for Bernouill i  shifts 

[13]. Genera l iza t ions  of  Rohl in ' s  t heorem to non-measure  preserving transfor-  

mat ions  and more  general  groups  have been given by various authors ;  in 

part icular  Krieger  [7] ex tended it to measure  preserving actions of discrete 

abelian groups  and Lind [8], to n-d imens iona l  flows. D y e  [3] p roved  the 

hyperfini teness of equivalence relat ions genera ted  by free actions of  countab le  

abelian groups,  and Connes  and Krieger  [1] p roved  hyperfini teness for free 

measure  class preserving actions of countable  solvable groups.  Ornste in  and 

Weiss [14] have given a more  construct ive proof  of the Rohl in  t heo rem for  

solvable groups.  (For a precise s ta tement  of the Rohl in  theorem see w below.) 
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The  main result of this paper  is that the Rohlin theorem holds for finite 

extensions of continuous solvable groups and for almost connected amenable  

groups. Our  techniques are an extension of those used by Ornstein and Weiss in 

the discrete case. 

In w we give a precise s ta tement  of the Rohlin theorem and prove some 

general results about  Rohlin towers. We show that if K ~ G --* G / K  is an exact 

sequence of locally compact  second countable groups where K is compact  and 

G / K  is an R-g roup  (i.e. the Rohlin theorem holds in G / K )  then so is G. w 

contains a detailed proof  that if H is an R -g roup  then so are split extensions of 

H by R. In w we show how to modify this to deal with arbitrary extensions of H 

by R or a compact  group. As corollaries we obtain the results stated above. We 

are indebted to J. Feldman for pointing out how to obtain Corollary 1.11. 

In w we show how to extend the notion of hyperfiniteness to uncountable 

equivalence relations (cf. also [4]) and show that free actions of R-g roups  

generate  hyperfinite equivalence relations. Finally we show that any free action 

of a continuous R -g roup  is weakly equivalent to a flow. 

w Rohlin towers 

Let G be a locally compact  second countable (1.c.s.c.) group and let X be a 

standard Borel G space (cf. [9]) with an invariant probabili ty measure /z. Let  

F C_ G be a Borel set. An F-base  in X is a Borel set V C X  such that F V  is 

Borel, / x ( F V ) > 0 ,  and such that the sets fV,  f E F, are disjoint. An F tower 

Q C X is a set Q = FV, where V is an F base. The  following result shows that 

the measure structure of a tower is exactly as expected. 

PROPOSITION 1.1. Let G be a l.c.s.c, group and let X be a standard Borel G 

space with invariant probability measure IX. Let )t be a left Haar measure on G, 

and let F C_ G be a Borel set with )t (F) > O. Let 17 be an F tower in X on a base V, 

and let F x V have the Borel structure induced from G x X. Then P: F x V ~ V, 

P(f,  v ) =  fv, is a Borel isomorphism and there is a measure v on V so that 

P , ( ) t  x u) = I~ I~'. u will be called the measure induced on V by V. 

PROOF. P is a Borel bijection and 17 is standard, hence P is an isomorphism 

(cf. [91). 

Let p:  1 7 ~  V be projection, p ( f v ) =  v, and set v = p . / 2 / ) t ( F )  where /2 = 

/z J,~. Le t /2  = f v t zodv (v )  be a decomposit ion of /2  with respect to p. Choose a 

countable dense set {g~ : i E Z} in G such that, up to a null set, G = UT=1 g~F. For  

g E G, let g: F--~gF  be the map g ( / )  = gf. Then for v a.a. v E V, g,/~o is a 

measure  on gF. We will show that for v a.a. v E V, 
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(1) g , . / z ~ = g j . / z ~  on g~FngjF Vi, j ~ Z  

or equivalently 

(2) g i ' g , , / z ~ = / z v  on g~Ig, F n F  Vi, j E Z .  

Suppose h E G and hF n F = E ~  0 .  Then /~: h-~E --> E and h - lE ,  E _C F. 

We also have /~ :  h-~EV-->EV, /~(x) = hx, and /~ , / x  Ih-,Ev = / z  I~v- Thus 

T h e r e f o r e / ~  IEv = /~ , /~ .  [Ev for v a.a. v ~ V, and so (2) holds outside a v null 

set N in V. 

If v ~ N then by (1) we may define a m e a s u r e / ~  on G b y / ~  Ig,F = g i . /zv . /~  is 

clearly invariant under  left translation by each g~. The weak continuity of the left 

regular representat ion ensures /.Zv is left invariant, so that /~ = f(v)A where 

f :  V---> R § is measurable,  f ( v ) =  #~(F)IA(F), and for W ~ ~ ( V ) ,  

A(F) L d r ( v ) - - / 2 ( F W )  = ~ I~o(F)dv(v)= f x(F)f(v)d,(v) 

so that f ( v )  = 1 a.a. v ~ V, and /.Z = A I~ • v. 

PROPOSITION 1.2. In the situation of Proposition 1.1, let O C G be an open set 

and let V, W be O towers with induced measures rl, v respectively on V, W. Let 

T: V---> W be a measurable bijection of the form T(v)  = fl(v), [3(v)E G. Then 

A(~(v))dT.~7(Tv)  = dv(Tv)  where A is the modular function of G. 

PROOF. Let {K,} be an increasing sequence of compact  sets with U K .  = G. 

Let  V. = {v ~ V: Qr K~}. Then U v ~  = V. It is sufficient to prove  the 

result for V., T(V. ) ,  i.e. we may assume Q[3(v)c_ K for some compact  set K. 

Just as in the proof  of Forrest ' s  theorem [5] II we may find e > 0 and an open 

ball B. C X such that r / ( B ~ ) > 0  and so that x ~ y r162 x = gy, g E K, is an 

equivalence relation on B., in which each orbit is a compact  set in X. Find a 

measurable  section F for this relation which is contained in V. Then as in [5] F is 

a K  base in X. 

If ~ ( F ) / r / ( V )  we may repeat  the argument  on V - F .  An exhaustion 

argument  shows that V = U F ,  (up to an T/ null set) where each F, is a K base. 

It is therefore  enough to see that T . ( r /  IF) = v IT~F~ when F is a K base. 
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Let E = T ( F ) .  Say A C K F A O E .  Set A o = { k E K : k v E A } ,  A w = 

{ q E Q : q w ~ A } .  Then Ao=Ar(o)/3(v). For if a E A ,  then a = k f = q e =  

q/3 (f ' ) f '  and q/3 (f') E K, hence f = f ' .  Now 

/ x ( a ) =  fv A(Ao)dTI(v)= fv A(Ar(~)/3(v))dTl(v)= fv A(/3(v))A(Ar(o))dTl(v) 

and 

= ~F A(/3(v))A(A,)dT,rl(w) 

f 
iz(A) = JE h(Aw)d~,(w). 

Say B C E. Then OB C_ KF O OE. Hence, applying the above with A = OB, 

we have S~A(/3(v))X(O)dT,n(w)= f~X(O)d~(w) s o  that A(/3(v))dT,n(w)= 
d~'(w), where w =/3(v)v.  

If G is a l.c.s.c, group acting freely on X and if D C G is a compact 

neighborhood of the identity, the existence of D towers in X is guaranteed by 

Forrest 's  theorem [5]. We give a stronger version of this result which will be of 

use later. 

PROPOSITION 1.3. Let G be a l.c.s.c, group acting freely on a standard Borel 
space X with invariant probability measure IX. Let Di, D2 be relatively compact 
open neighborhoods of e E G, Di C_ D2, and let A ~ ~ ( X), Ix (A ) > O. Then there 
is a D2 base B C A such that tz(D~B n A)>O.  

PROOF. We follow the method of [5]. By [10] lemma 2, we may assume that X 

is a separable metric space with metric d and that G acts continuously. Choose 

E2 a relatively compact symmetric open neighborhood of e E G such that 

D2 _C E2. 
For e > O, set 

A,  = {x E X: d(x, gx) <= e # g E E2 or g ~ E2E2}. 

As in [5], As is open and X = U,>o A,.  Pick a > 0 such that/x (A~ O A ) > 0. A~ 

is the union of a countable number  of open balls of radius less than a/2. Pick 

such a ball S~ _C A~ with/z(S~ n A ) > 0. For 8 > 0, set B, = {x E X:  d(x, gx) < 
6 ~ g ED1  or g~/~z}. Again B~ is open and X =  Us>oBs. Choose /3 > 0  

such that t z ( S~AA  O B 0 ) > 0 .  Choose a /3/2 ball So C_S~DBo such that 

/x(S~ n A ) > 0 .  Define an equivalence relation on So by x ~ y  r162 x = dy, 

d E/52. This is an equivalence relation since /52 is symmetric and since 

diam(S0) < a and S o C Ao. Since /52 is compact the quotient space S~/~ is a 
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standard Borel space (cf. [11] lemma 2). Choose a measurable  section T: So/ 
--~ S0 so that if x E S0, and orbx n A ~ Q, then T(~)  E A where g is the image 

of x in S ~ / - .  Set B = T ( S o / - ) A A .  S ~ A A  C ff~zB, so /z ( /~2B)>0 .  Say 

x E S ~ A A .  Then x = d b ,  deify2, b ~ B f 7 A ,  by the way in which T was 

chosen, d(x, b) </3  and so d E De, S~ n A C_ D~B. Thus tz (DIB n A )  > O. B is 

the required base. 

In the case of a single transformation,  or action of Z, the Rohlin theorem gives 

the existence of {0, 1,- �9 �9 n} towers in X which fill X to within any prescribed 

amount ,  for arbitrarily large n. We now formulate a Rohlin theorem for an 

arbitrary 1.c.s.c. group, following [14]. G is a 1.c.s.c. group, X a standard Borel G 

space with invariant probabili ty measure /~, A a left Haa r  measure  on G. 

DEFINITION 1.4. Let F_C G be compact ,  and e > 0 .  K _C G is F, e (left) 

invariant if h (K)  < 0o and 

~({k E K :  fk ~ K Vf  E F } ) > ( 1 -  e);~(K). 

A set A E ~ (X)  is F, e invariant if 

/x ({x E A : fx E A Vf  E F}) > (1 - e)/z (A).  

DEFINITION 1.5. A relatively compact  open set F _C G is an R-se t  if for any 

free Borel  measure  preserving action of G on a standard probabil i ty space X, 

and for any e > 0  there is an F- tower  V_CX with / z ( l ? ) >  1 -  e. 

DEFINITION 1.6. G is an R-group  if for any compact  sets E, F C G and any 

e > 0 there exists an R-se t  O C_ G such that E _C O and O is F, e invariant. 

Usually we will abbreviate  this by saying there exist arbitrarily large arbitrarily 

left invariant R-se ts  in G. 

It is known that discrete abelian groups are R-groups  [7] and that R" x Z"  is 

an R - g r o u p  [8]. In [14] it is shown tha t  if H is a discrete R - g r o u p  then so are 

extensions of H by discrete cyclic groups. As a corollary all solvable discrete 

groups are R-groups  [14]. We extend this result to the continuous case: in w we 

prove 

THEOREM 1.7. If  H is an R-group and G a split extension of H by R, then G is 
an R-group. 

In w we extend this to more  general extensions: a piecewise continuous 

extension G of H by L is an extension such that for each compact  set K _C L 

there is a partition K = U~'=~K,, and a section a :  L ~  G, so that a IK, is 

continuous for each i. We  prove: 
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THEOREM 1.8. I f  H is an R -group and G a piecewise continous extension of H 

by R or a compact group K, then G is an R-group. 

The methods of [14] and Proposition 1.1 give a similar result for extensions of 

H by Z (notice that such extensions necessarily split). We also observe the 

following: 

PROPOSITION 1.9. Let G be a l.c.s.c, group and let K C_ G be a compact normal 

subgroup so that G / K  is an R-group. Then G is an R-group. 

PROOF. Let X,/z be a standard probability G space with G acting freely. 

Since K is compact the space X of K orbits is a standard Borel G / K  space (cf. 

[11] lemma 2) and the projection p: X-->.Y induces an invariant probability 

measure/~ on X. Let  A be a left Haar  measure on G and let q: G---~G/K be 

projection, q .)t is a o--finite left invariant measure on G/K,  since K is compact. 

Let E, F _C G be compact and let & e > 0 be given. Choose a q (F), e invariant 

R-set  A C G / K  with q(E)C_ A.  Choose an A base V C Xr with I~(A V)  > 1 - 8. 

Let T: .,Y----~X be a Borel  section of q. Then T ( V )  is an A K  base in 

X, t z ( A K T ( V ) )  > 1 - 8 and A K  is open, relatively compact, F, e invariant, and 

E C AK.  

PROPOSITION 1.10. Let G = I,.J~=l G, where GI C_ G2 C_ . . . are open subgroups 

o[ G which are R-groups. Then G is an R-group. 

PROOF. It is enough to observe that the Haar  measure on G,  is the restriction 

of Haar  measure on G, and that any compact set J C G is contained in some G,. 

We are now in a position to apply the structure theory of 1.c.s.c. groups to 

obtain the following: 

COROLLARY 1.11. Any  l.c.s.c, abelian group is an R-group. 

PROOF. By 1.10 it is enough to consider compactly generated abelian groups. 

Any such group is of the form K x R" x Z m, where K is compact. The result 

follows by [8] and 1.9. 

COROLLARY 1.12. A n y  solvable l.c.s.c, group is an R-group. 

PROOF. First assume G connected. By Gleason's theorem there is a compact 

normal subgroup K _C G so that G / K  is a solvable Lie group. By 1.9 it is 

sufficient to see G / K  is an R-group.  G / K  is built up by a finite number  of 

extensions of an abelian group by R or a compact group. Since all the groups are 

Lie groups these are all piecewise continuous extensions. The result follows by 

1.7, 1.8 and 1.11. 
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If G is not connected,  let Go be the identity component .  G is an extension of 

Go by a discrete solvable group;  hence we need only consider extensions of 

R-groups  by discrete abelian groups. The result follows as in [14], or  f rom 1.7, 

1.8 and 1.10. 

COROLLARY 1.13. Almost connected amenable I.c.s.c. groups are R-groups. 

PROOF. G almost connected means G/Go compact .  1.8 reduces to the case of 

connected amenable  groups, and Gleason 's  theorem and 1.9 reduces to con- 

nected amenable  Lie groups. These are precisely those groups for which 

G / r a d  G is compact ,  where rad G is solvable. 1.12 and 1.8 give the result. 

02. Rohlin's Theorem for split extensions of R-groups 

In this section we prove  Theorem 1.7. Throughout ,  H is an l.c.s.c. R -g roup  

and G is a split extension of H by R, G = R |  where 7,(h) = t-lht. A will 

denote  a left H a a r  measure on H and h will be Lebesgue measure on R. X will 

be a standard Borel  G space, and G will act freely preserving a probabili ty 

measure /x. We write I (T)  = [ -  T, T]. h x A is a left H a a r  measure  on G. 

REMARK 2.1. The map R x H - - > H ,  (t,h)-->z,(h) is necessarily Borel and 

hence continuous by [12] proposit ion 1.4. The topology on G is therefore  that of 

R x H .  

REMARK 2.2. If H is discrete and (t,h)-->z,(h) continuous, then we must 

have r , (h) - - -h ,  so that G = R x H .  

We will give our proof  in the case of continuous H. At  those points in our 

argument  where we use the continuity of A it will be seen that we could equally 

well use ~- -= identity, so that we in fact prove the result in case H discrete also. 

LEMMA 2.3. There are arbitrarily large arbitrarily left invariant open relatively 
compact sets in G of the form I (T)A,  where A C_ H is an R-set. 

PROOF. Suppose compact  sets E, F _C G and e > 0 are given. Find compact  

sets El,  F1 C_ H and S, T > 0 such that E C_ I(S)EI, F C_ I(T)F~. Pick So > S so 

that T / S o < l - ( 1 - e )  "2, and choose A C_H to be an F2=Ut,l.,so~',(F~), 
1 -  ( 1 -  e)  '/2 invariant R-se t  containing E~. 

Let B = {a @ A : fa E A Vf E F2}. h (B)  > (1 - e)~/2h (A). I (T)FI I (So-  T)B 
C_ I(So)A. Moreover  
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h x A ( I ( S o -  T)B)  = 2(So - T)A(B)  > 2SoA(A)(1 - e)'/2(1 - T/So) 

> 2SoA ( A ) ( 1  - e )  

= (1 - e)h x A(I(So)A). 

F C_ I(T)FI and E C_ I(So)A so that  I(So)A is sufficiently invariant .  

COROLLARY 2.4. To prove Theorem 1.7 it is sufficient to show that sets of the 

form I ( T ) A  are R-sets in G whenever A is an R-set in H. 

T h e o r e m  117 follows f rom the fol lowing two results: 

PROPOSITION 2.5. Let A C H be an R -set and let T > O, e > 0 be given. Then 

there exist a relatively compact open set J = J(A,  T, e) C_ H, S = S(A,  T, e) > O, 

and a = a (A ,  T, e ) > 0  such that if B is a J, ~ invariant R-set in H and T ' >  S, 

and if Q C_ X is an I (T ' )B  tower, then there is an I ( T ) A  tower if" C Q such that 

/~ (IV) > (1 - e ) ~  (V) .  

PROPOSITION 2.6. There exists a > 0 so that for any R-set A C H and any 

T > O, there are a symmetric open relatively compact set F = F(A,  T)  C_ H, and 

U =  U ( A , T ) > O ,  [3 = [3(A, T ) > 0  such that in any I(U)F, [3 invariant set 

Z ~ ~ (X)  with I~ (Z)  > O, an I ( T ) A  tower if" may be found with Ix (if ')  > a~ (Z). 

PROOF OF THEOREM 1.7. It is sufficient to show that  given an R - s e t  A C H 

and T > 0 ,  e > 0  there  is an I ( T ) A  t ower  17" with / . t ( ~ ' ) >  1 -  e. 

Choose  n so that  (1 - a)* < (1 - e )  1t2. Set e~ = 1 - (1 - e )  ~/2. Choose  ;t so that  

x/(1 - x )  < A for  0 --< x -< (1 - e)1~2. Induct ively  find R -sets A,  _C H,  and  T, > 0, 

4', > 0, r = 1 , . . . ,  n, so that  

(1) A t = A ,  T ,= T, r  

(2) A,  is J(A,  T, el), or(A, T, e~) invar iant  and T, > S(A,  T, el), 

(3) I(T,+~)A,+I is ( I ( U ( A ,  T , ) )F(A,  T,)) -~, (1/A )[3(A,, T.) invar iant ,  

where  we use the  no ta t ion  of 2.5, 2.6. T h e  choice  of  (3) can be  m a d e  using the 

m e t h o d  of L e m m a  2.3. 

By Propos i t ion  2.6 find an I ( T , ) A .  tower  H ,  with / . ~ ( H , ) > a .  If 

/ z ( H , ) > ( 1 - e )  1~, s top.  Othe rwise  # ( H , ) / l z ( X - H , ) < A  and  f rom the 

(I(U(A~_~, T~_O)F(A,_~, T._O) -~, [3(A,_~, T._0/A invar iance  of I (T , )A , ,  we see 

that  X - H ,  is I (U(A,_I ,  T._O)F(A,_~, T~_~), [3(A~_~, T~_I) invariant .  Use  2.6 to 

choose  an I(T,_,)A,_t tower  H , _ ~ C _ X - H .  with I z ( H . - O > a ~ ( X - H . ) .  

/z ( X  - / 4 .  - H ._ , )  < (1 - a )  2. If /z (H ,  t_J H,_I )  > (1 - e)~t2, stop, o therwise  con- 

t inue in this way. T h e  process  t e rmina tes  on or  be fo re  the n th step. W e  obta in  

dis joint  sets H , , H . _ I , . . - ,  Hk so that  
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(4) H, is an I (T , )A ,  tower, 

(5) / ,~(U~H,) > (1 - e)  la. 

Use Proposition 2.5 to find I ( T ) A  towers V, in each set H, with 

t z ( V , ) > l x ( H , ) ( 1 - e )  1/2. Then U~,V, is an I ( T ) A  tower V with / z ( V ) >  

t z ( U "k n , ) (1 - e ) l /~>  l - e .  

We turn to the proof  of Proposition 2.5. 

LEMMA 2.7. Let Q C_ H be an R-set  and let e > O. Let Z ~ ~ (X),  lz (Z )  > O, 

be QQ -1, e/3 invariant. Then there is a Q tower f" C_ Z with tx (~ ' )  > /~  (Z )  (1 - e ). 

PROOF, Let Z ' = { z E Z : h z ~ Z V h ~ Q Q - ~ } .  I z ( Z ' ) > ( 1 - e / 3 ) t z ( Z ) .  

Choose a Q tower f f ' c x  so that / x ( Z - f f ' ) < ~ e / x ( Z ) .  Choose a with 

1 - e < a < 1 - 2e/3. Let u be the measure induced on the base W of I~' by if'. 

Suppose 

Then 

atz (Z)  Vq E O. u ( Z ' n q W ) < -  A(O) 

(z '  n (z) ,  

so t ~ ( Z ) ( 1 - 2 E / 3 ) < l ~ ( z ' n v ~ z ) < ( 1 - 2 e / 3 ) l ~ ( Z ) .  Hence  3 q o E O  such 

that v ( Z '  n qoW) > (at~ (Z) /h  (Q),  and v (q ;1Z  ' n W)  > r ( z ) / h  (O).  

O ( q o l Z ' n  w ) c _ z  and q o ~ Z ' n  W is a Q base, also 

i~ (O(qolZ  ' n W))  = fo v(q(q~ n W))dA (q) > a/~ (Z)  >/. t  (Z)(1  - e). 

LEMMA 2.8. Let A C_ H be an R-set, and let T > 0 ,  e > 0 ,  8 > 0  with 

(1 + 8)(1 - e)  < 1 be given. Let Q C_ X be an I (T(1  + 8)) tower on a base V such 

that, with respect to the induced measure to on V, the sets tV  are A A  -1, e ' invariant 

whenever It l <- ST, where e '  = �88 - (1 + 8)(1 - e)}. Then there is an I ( T ) A  tower 

VC C_ ~" with ~ ( r ~ ) > / z ( V ' ) ( 1  - e).  

PROOF. Set 0 = I (6T)V,  V, = tV, V', = {x E V,: hx E V, Vh E AA-~},  0 '= 

Ul,l~sr V;. Then U '  is measurable  and 

' > ')to (V,), (1) to(V,) = (1 - 

(2) /z ( 0 ' ) -  > (1 - e')/~ ( 0 ) .  

By L e m m a  2.7 there is an A tower I 7 C  0 on a base Y with i , ( f ~ ) >  

( 1 - 3 e ' ) / z ( O ) ,  and we see f rom the proof  of 2.7 that we may suppose 
y C A - t O  '. 
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/ ~ ( 0 '  O Y) > (1 - 4e ' ) /~(O) by (2). Therefore  3to E R, J toJ < ST, such that 

(3) to(V:o N I7) > (1 - 4e ')to(V). 

Now A (A-1V,'o N Y)_C V~ by the definition of V,'o. If x E V,' o tq l 7, then x = ay, 

a ~ A, y E Y. Moreover  y = a'-ls, a '  E A, s E U';  hence s = a 'a - l x  E V~, and 

so s ~ W  o. Thus 

(4) WoN ~" C _ A ( A - 1 W o N  Y)C_ V~. 

The sets ta (A- lV ' ,oN Y), Itl <- _ T, a C A ,  are disjoint and 

Iz ( I ( T ) A  (A  -~ Wo tq Y)) = 2Tto(A (A -1 V, ~ f3 Y) )  

_-> 2 T ( 1  - 4 e ' ) t o ( V )  by (3) and (4) 

2 T  
= ( 1 -  4e') 2T(1 + 3) tz(Q) 

= ( 1 -  e)/~(V). 

COROLLARY 2.9. Let A,  T, e, 3, e ' be as above. Let B C H be a 

Ui,l~aT~',(AA-l), e '  invariant R-set  in H. Then given any I (T(1  + 8))B tower Q 

there is an I ( T ) A  tower if'C_ (z such that/~(IYr tt ( f ' ) (1  - e). 

PROOF. Let  V be the base of V. It is easy to check that the sets tV, I t I <- BT, 

are A A  -1, e ' invariant with respect to the induced measure on V. Then apply the 

Lemma. 

PROOF OF PROPOSITION 2.5. Let A C_ H be an R set and let T > 0, e > 0 be 

given. Choose e '  so that ( 1 -  e ' )2> 1 -  e, and 8 > 0  so that ( 1 -  e ')(1 + 8 ) <  1. 

Set S = T(1 + 8) /e ' ,  J = I,.JI,j,,~Tr,(AA-1), a = �88 - (1 + 8)(1 - e')}. Suppose 

17' _C X is an I ( T ' ) B  tower where T '  > S and B is a J, a invariant R-set  in H. 

Divide I ( T ' )  into disjoint intervals K~ of length 2T(1 + 8) so that the remaining 

part has length < 2T(1 + 3) < 2e 'T ' .  Each Ki determines an I (T(1  + 8))B tower 

V~. Apply Corollary 2.9 to find I ( T ) A  towers W~_C V~ with /~(W~)> 

# (V~)(1-  e ' ) . / x ( U  W~)> ( 1 -  e ' ) / z ( U  G )  > (1 - e')2/z (V) > (1 - e) l z (V) .  U W ,  

is the required I ( T ) A  tower. 

LEMMA 2.10. Let P, Q be probability spaces with measures p, q and suppose 

E ~ ~ ( P  x Q),  p x q ( E ) > O ,  and 8 , 0 < 8 < 1 ,  are given. Then there is a set 

N E ~ (Q)  so that q (N)  > 0 and ess sup,~M q (E tq {s } x N)  > &/(N). 

PROOF. S e t m = p x q a n d c h o o s e e ,  e ' > O s o t h a t e ' < l - S a n d e / ( 1 - e ) <  
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e ' .  Find sets Pi E ~ ( P ) ,  Qi E ~ ( Q ) ,  i = 1 , . . . , n ,  with m ( E A  U ~  P~ x O , ) <  

era(E). By subdivision we may asume U ~ P ~  x Q~ to be a disjoint union of 

rectangles. 

If m(P~ x Q, -E)>= e'm(P~ x Q~), Vi then 

and em (E)  _- e'(1 - e)m (E)  which is impossible. 

Choose io with m (P~ x O~ - E )  < e ' m  (P~ x Od .  Then 

(1) S~, m(En{x}xOOdp(x)=m(EnP~xO~)~(l-e')m(P~xO~). 
i o 

ess sup m (E n {x} • Q~) _-< &/(Q~) 
$ ~ P I  0 

I_ m (E n {x } x Qr (x) <- 8m (P~ x Qr 
J l "  i o 

This contradicts (1), so the result is proved. 

LEMMA 2.11. L e t Q C _ H b e a n R - s e t a n d l e t V C _ X b e a Q b a s e w i t h m e a s u r e  

v induced by QV. Let T > 0, 8 > 0, 3' > 0, 81 > 0 be given with 8 < 1 - 7, and let 

P C  Q be compact with A ( P ) > ( 1 - r ) A ( Q ) .  Then there are an I ( T ) Q  base 

W C X and a set J C- I(81) and V1 C_ V so that 

(1) v(V1)>O,  h ( J ) > O ,  

(2) PV1C JQW, 
(3) to(tQW n QV1) > &o(QW) v t  E J, 

where to is the measure induced on Q W  by the I (T )  tower I ( T ) Q W .  

PROOF. Use compactness of P and continuity of z to find a symmetr ic  

neighborhood U of e E H, and e > 0, so that ~', (PU)U C_ Q for It I --< e ; and so 

that 

I(e)UC_ I ( T ) Q  and e < 81. 

By Proposition 1.1, t z (UV)>O.  Apply Proposit ion 1.3 to find an I ( T ) Q  base 

WI C U V  such that ix(I(e)UW~ N U V ) > 0 .  Let ~ be the measure  induced on 

W~ by the I ( e ) U  tower I(e)UW~. Choose 8 '  with 8/(1 - 7)  < 8 '  < 1. By L e m m a  

2.10 there is a set WC_W1 so that r / ( W ) > 0 ,  and h •  where 

F = { ( t , u ) E I ( e ) •  U: rl(tuW n UV)>SqT(W)} .  Let zr: QV---~ V be projec- 

tion and set V1 = r O UV).  Then v(V1) > 0. Set J = {t E R: (t, u)  ~ F some 

u C U}. Certainly h (J)  > 0 and J C- 1(81). Moreover  
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s E V1 ~ us = tUlW for  some (t, u t )EF,  u E U, w E W 

ps = pu-ltu~w = tr,(pu-t)ulw E JQW wheneve r  p E P. 

H e n c e  PVx C_ JQW. 

Also 

( t , u ) E I ( e ) x  U ~ {w E W: tuw ~ UV~}C_{w E W: tpw E QV1}Vp EP,  

because  tuw = u~vt, u~ E U, Vl E VI ~ tpw = r_,(pu-~)u~u-ittuw = 

r-, (pu-~)utvt E QVx. T h e r e f o r e  

( t , u ) E F  ~ 8'~l(W)<= rl(tuW fq UV)= ~l(tuW N UV 0 

<- rl(tpW fq OVl) Vp E V 

8'A x 7/(PW)_-<A x 71(tPWA QV O. 

Since to = A x r/, 

to(tOW fq OVa)>-_ to(tPW fq QV 0 >- 8'to(PW)= ' A(P) a to(OW) x(O) > 8to(OW). 

REMARK 2.12. Not ice  that we may suppose U chosen so that  / z ( Q U ) <  

2/z (Q) .  

PROOF OF PROPOSITION 2.6. Le t  A C_ H be  an R-se t  and let T > 0. We  make  

the following choices: 

( i )  e l  = 1 - 2 - 1 ~ ;  

(ii) 0 < g < l ,  ( l + g ) ( 1 - e l ) < l ;  

(iii) e~ = ~{1 - (1 + g)(1 - el)}; 

(iv) T ' =  T ( l + g ) ;  

(v) 0 < 8 < 1, 1/8 [1/50 + (1 - 8) /8]  < 1/16; 

(vi) 0 < 1 , < 1 ,  ~ < 1 - 8 ;  

(vii) T" = T'(2 + 8);  

(viii) fl > 0, x - fl > (1 - e ~) (x + fl) wheneve r  x _-> �89 
I-J I'']~rO+2a) "rl(AA-1)I"I(AA -1), fl invariant  R-se t ;  (ix) O _C H a --i,l~r(l+~) 

(x) PC_Q compact ,  X ( P ) > ( 1 - v ) X ( Q ) ;  
(xi) U _C H a symmetr ic  ne ighborhood  of e E H,  e > 0 so that  z, (PU) U C_ Q 

for Itl_- < e and A(QU)<2A(Q);  

(xii) /3 such that  (1 - 3/3)(1 - / 3 )  > 2-~/2; 

(xiii) Q ' =  QU. 

We will show that  F(A, T) = (QU)(QU)- ' ,  U(A, T) = T", /3(A, T) =/3, a = 
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1/400 are suitable choices to ensure the conclusion of 2.6. For  convenience the 

proof is divided into a sequence of steps. Z E ~ (X) is an I(U)F, fl invariant set 

with /z (Z)  > 0. 

(A) We find a set Z" C Z so that all towers construct~ J in the proof on bases 

in Z" lie inside Z. 

Set 

Z '={z  EZ:  tz E Z  Vltl<= T"}, 

Z"={z  E Z :  thz E Z  Vltl<= T", h EF}. 

Then FZ"C_ Z and / z ( Z " ) =  > ( 1 - / 3 ) / z ( Z ) .  By Lemma 2.7 there is a O tower 

17" C Z '  with /z (17) = > (1 - 3/3)~ ( Z ' ) _  --> (1 - 3/~)(1 - /3) /z  (Z)  > / z  (Z)2 -1~ by (xii). 

The base V of I7" may be chosen with V C O'-IZ ", hence O ' V C Z '  and 

I(T")O'V C_ Z. 
(B) We fill most of Z with I(T")O towers of a special kind. Use conditions 

(vi), (x), (xi) and apply Lemma 2.11 repeatedly with an exhaustion argument to 

find disjoint sets V, _C V, and I(T")Q bases W, C UV~, and sets Z C_ I(ST') such 

that if v is the measure induced on V by the tower I7, and o, the measure 

induced on QW~ by the tower I(T")QW, 
(1) v ( v , ) > 0 ,  e, = h ( J , )>O,  UT=, v, = v,  

(2) PV, C_ LOW,, 
(3) to,(tQW, n OVa) > &o(OW~) Vt EJ~. 

By (A), I(T")QW, C_Z. For N E ~ ( X ) ,  write /V= QN. For S > 0 ,  set 

E(S) = [0, S], E*(S) = (0, S]. Since the sets W, are disjoint and since to, = toj on 

t,W~ n tjWj we may without ambiguity define to to be a measure on sets of the 

form U W, or tW,, where to [,w, = to~, using 1.2 and unimodularity of R. 

(C) We inductively choose bases W, whose R translates are sufficiently 

disjoint to build large I(T') towers. 

Suppose that W , , . . . ,  Wm have been chosen such that 

(4), 2to(L,)>to(M,), i = 1 , . . . ,m  

where M, = Ui=,  l~j, L = M, - E *(2T')M,. 

Suppose that W,.+~ satisfies 

(5).,+, 4w (IYr fl E(2T')M,)< to(lYe..+ O, 

(6),.+, 4to (v1~',,,+1 n E ( - 2 T ' ) M ~  ) <  to (# .+ , ) .  

We show that (4),.+t holds also: 
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Lm.~ = (lYCm+l - E(2T')M= ) U (L., - E (2T') I~'~,§ 

(7) to (Wm + 1  - -  E (2 T')Mm ) => ~ to (if',, +0, by (5),. § 

Also, by Proposition 1.2: 

(8) to (Lm n E (2 T') ff',~ +1) = O )  (E ( - -  2 T')L,. n if'" +1), 

o~(L" - E(2T' ) I~"§ = oJ(L,. ) -  oJ(L,, n E(2T')I~/,.§ 0 

> ~,~(M")-  ~ 0 , ( ~ . , )  

by (8), (4)m, (6)"§ Hence 2to(Lm+,)-  > to(M.+,) by (7). 
(D) We show that sets W, may be chosen satisfying (5),, (6), until 

IO0tz(E(2T')M.)>tz(V') or IO0tz(E(-2T')M.)>tz(~ ' ) .  Suppose W~, i =  
1 , . . - , m  satisfy (5),, (6), and IO01.t(E(2T')Mm)<Iz(Q). Write M = Mm. Set 

[(x) = ~ co(ff'~ N E(2T')M)x~,,(x)oJ(ff'~)-', x E V. 
i = l  

We estimate f~,[(x)dtz (x): 

i~(~)  = ~(PV~)A(Q)A(P)-'< (1 - r)-~/~ (J,l~/,) = (1 - ~ t ) - l ~ , o ) ( ~ )  

by (x), (1) and (2); 

~(J,~ n ~)  > ~,0,(~,) 

by (1), (3). Hence 

(9) 8~,,o ( ~ , )  < ~ ( 9 )  < ~,,o(~,)(1 - v)-'. 

Write K = E(T") .  J,E(2T') C_ K, Vi by choice of J,. 

(10) to(E(2T')M n I~',) = to(tE(2T')M n tl~',) ~ to(KM n till,), t E J,, 

(11) ~z(~nKM)>-t~(f',nKMOJ,~C,)= fj oJ(Q~nKMntff '~)dt  
i 

= fj, oJ(KM O tlTl/~)dt-fl, ~o(KM N (tlTl/j- Qi))dt 

> e,to(E(2T')M n i f ' , ) -  e,(1 - 8)to(l~'~) 

by (10) and (3). 
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ff f(x)dtz(x) = 2 to(l,~', n E(2T')M)/ . t  (Q0to(l~/0-'  
i = l  

<= 2 to(if', n E(2T')M)e, (1 - 30 -1 by (9) 
i = 1  

< ( 1 - Y ) - I  [~1 tt(Q~ A K M ) +  ,=1 ~ e~to(ff ' , ) (1-8)]  by (11) 

_-< (I - y)-1[/x (E(2T ' )M)  + T'6to(M) 
+ 6-I(1 - 6)IX (Q)] by (9) 

since iz([a,b]M)<-E%ll~([a,b]lYr Ia " - - = - b l E , = l t o ( W , ) - I a - b l t o ( M  ). 
Now to (M,.) < 2to (L,,) by (4),., so 6T'to (M) < 8/~ (E (2 T')M),  

f f(x)dt~(x)<= - y)-I[~(E(2T')M)(1 + 3)+ 8 - ' ( 1 -  3 )# (V) ]  (1 

=< 6 - ' [ ~  + 6-1(1 - 6)]/.t (Q) by (vi) 

</z  (Q)/16 by (v). 

By Tchebychev's  inequality, /x ({x E Q: f (x)  =< I}) => ~/x (17). Define 

g(x) = 2 to(l~,', n E( - 2r')M)x~,(x)to(lg'~) -1, x E V. 

By exactly similar estimates we obtain/z ({x ~ Q: g (x) = ~}) _-> ~/~ (Q). Therefore 
f(x), g(x) are simultaneously N 1 on a set of positive measure,  so that V.,+I, 
W,.+, satisfying (5)m+1, (6)~+1 may be chosen. 

(E) Use (D) and an exhaustion argument  to obtain W 1 , " . ,  IV, satisfying (5)~, 
(6), such that ~(E(2T')M,)>-IX(Q)/IO0. (The argument  for E ( - 2 T ' )  is 

similar.) 
By (4)., 2to(L,)>to(M,). Hence 

r to(M.)= ~tz(E(2T')M.) > Ix(Q) (12) ~(E(2T')L.)  = 2T'to(L.)> ' >1 = 200 

N = T'L, is an I(T') base. In (F) below we show that large subsets tN' C_ tN, 
Itl_- < gT, are A A  -1, e~ invariant. By Lemma 2.8 and (ii), (iii), (iv) there is an 

I (T)A tower IV _C I(T')N'  with /z (if ')  > IX (I(T')N')(1 - el). Then 

/x(IV) > ( 1 -  el)ix(Q) by (12) 
2OO 

> / z  (Z)  by (A) and (i). 
4O0 
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(F) Invariance of the sets tN, It I <- g T  : 
Let 

Is rae l  J. Ma th .  

Q, = {q ~ Q: r, (AA-l)q C_ Q, V lt I <- T(1 + 2t~)}, 

Q2 = {q E Q : r,,(AA -')r, (AA -')q C_ Q, V lt' I <= T(1 + 28-), I t I --< T(1 + 8-)}. 

Then r, (AA -')O2 C_ Q, for It I =< T(1 + g) and h (O2) > (1 - fl)h (Q1) by (ix). Set 

M =  0 IX',, M~ = 0 OeWj, i = 1 , 2 ;  
e=l i= l  

L = M - E *(2T)M, L, = Me - E *(2 T)Me, i = 1, 2. 

(13) A A  -'(t(Mz - E *(2 T)M))  _C tL, 

whenever I t -  T' t ~-gT by choice of Q~ and Q2. By Proposition 1.1,/z Ii(r)~, = 
h x h  xr/e 

(14) 

/ 

0 
\ e=l 

_-> to (L) -/3to (M). 

Since L1 is an E ( 2 T )  base, Proposition 1.2 shows that 

where T/i is the induced measure on W. Therefore toe = A x ~/i, 

t o ( M 2 - E * ( 2 T ) M ) = t o ( L ) - t o ( ( O - O 2 )  e=lO We lqL) 

to(E *(2T)(Q - Q~)W~ tq L~) = to((Q - Q1)Wi ~ E *( -- 2T)L~) 

--< t o ( ( o  - o , ) w , ) ,  

to(E*(2T)(Q--Q1) O1 WiOL1) ~ i=12 t o ( ( Q  -- Q1) W/) 

n 
<~Y~ (~,) ~ (M) 

(15) 

<-_ to(L)+ flto(M). 

By (14) and (15), 

to (L) - 3to (M) t o ( M ~ -  • * ( 2 T ) M )  > >- 1 - ~; 
~o(L,) = to(L) + floJ(M) 

to(LO = to(M~- E*(2T)M)*  t o ( E * ( 2 T ) ( Q - Q  0 ,,=~0 Wj AL~)  

by (viii) and (4).. 
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This with (13) gives the invariance of the sets tL~ = tN' which are close in size to 

tN. 

w Piecewise continuous extensions of R-groups 

We show how to modify w to prove Theo re m 1.8. a will be  a fixed piecewise 

continuous section a :  L ~ G, and if E _C L, A C H we write E A  = {a(e)a:  

a E E, a E A }. Using a to identify G with L x H we see that v = h x A is a left 

Haar  measure on G. r p ( h ) = a ( p ) - ~ h a ( p ) ,  p E L .  If H is discrete r is the 

identity in a neighborhood of e and this replaces the assumption that A is 

continuous. The  analogue of L e m m a  2.1 will be L e m m a  2.1", etc. 

Case 1: L = K, compact 

LEMMA 2.3*. TO prove that G is an R-group it is sufficient to show that K A  is 

an R-set  whenever A C H is an R-set. 

PROOF. Suppose E, F _C G are compact  and e > 0 is given. Let Ek = E O kH. 

b ' :  d--~a(p(d) ) -Ld  is continuous on p - l ( K i ) n E ,  where p:  G---~K is projec- 

tion. Therefore  @ ( E ) =  Uk~Kk-~Ek is relatively compact .  

Let Fk = F O kH, [3(k, k ')  = a ( k ' k  )a (k  )-'. Then Fk. =/3(k ,  k ' )G(k,  k')  where 

G(k,  k')C_ H. 4 :  f, k , ,  r (k  ) (a(k  ) a ( p ( f ) k  )-~)[ is continuous on F n p - l (K, )  x 

Kj and hence ~ ( F  x K )  = Uk.k.~K r ( k ) G ( k ,  k ') is relatively compact .  Choose an 

R-se t  B C H so that qb(E) C B and B is ~ ( F  x K),  e invariant. Then K B  D E 

and K B  is open and relatively compact.  

v({x ~ K B  : F X  ff_ KB  }) = fK )l({x E kB " Fx ff. KB  })dk 

= fK A({x E B:  r ( k ) O ( k , k ' ) x  if- B V k ' E  K ) d k  

< e ~K )t (B )dk  

= ev (KB) .  

Sets K B  can therefore be chosen arbitrarily large and arbitrarily left invariant. 

LEMMA 2.8*. Let A C H be an R -set and let e > 0 be given. Let Q C X be a K 

tower on a base V such that, with respect to the induced measure ~o on V, the sets 

k V  are all A A - ' ,  e/4 invariant. Then there is a K A  tower if'C_ Q with 

/~(W) >/~  ( f ' ) (1  - e). 
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REMARK. The induced measure to on V has only been defined when V is of 

the form BW, B C_ H, and W is a KB to~,er. This condition is however always 

fulfilled when we apply the Lemma or make other use of the induced measure. 

Moreover  it is not hard to see that one can modify the proof of Proposition 1.1 to 

show that the measure on a K tower is h x v where h is left Haar  measure on K 

and v is the induced measure. Notice that since K is unimodular, we have 

T.~/ = v in applications of Proposition 1.2. 

PROOF. The modifications to make in 2.8 are clear. 

Lemma 2.8* is a substitute for Proposition 2.5. 

PROPOSITION 2.6*. There exists a > 0 so that for any R-set A C_ H there is a 
symmetric open relatively compact set F = F(A  ) C_ H and fl = fl (A ) > 0 such that 

in any KF, fl invariant set Z E ~ (X)  with/~ (Z)  > 0, a K A  tower lg" may be found 

with i �9 (IFr > atz (Z). 

It is obvious how to modify the proof of 1.7 to obtain 1.8 from 2.6* and 2.8*. It 

remains to prove 2.6*. 

A C_H is an R-set.  Write D = { a ( k ) o t ( k ' ) - ~ : k , k ' E K } .  Let Y C _ H  be 

compact, symmetric, and let D C_ K Y  and K2_C KY. 

Make the following choices: 

(i) el = 1 - 2 -~, 

(ii) 0 < ~ < 1, ~-~(3/50 + (1 - ~)/~) < 1/16, 

(iii) 0 < / 3  <1/3 ,  ( 2 + / 3 ) / ( 1 - / 3 ) < 6 ,  ( 1 - / 3 ) ( 1 - 3 / 3 ) > 2  -t , ( 1 - / 3 ) ( 1 - e l ) >  

~, (x - / 3 ) > ( 1 -  el/4)(x + fl) for x -->-L 

(iv) Q '  _-< H a Y2B, 1 - (1 +/3/2) -1 invariant R-set  where 

B = L.J{rv(.rp(AA-1))Y: k ' E  K, p ~ ot(K)lA a(K)-~}, 

(v) Q = {q ~ Q,: y2q c_ Q'}, 

(vi) 0 < 3 , < 1 ,  1 - 6 > %  

(vii) P _C Q compact, x(P)>(1- 3,)x(O), 
(viii) E C_H, C C_K symmetric neighborhoods of the identity with 

zk (PE)E C_ Q Vk E C, and QE C_ y2Q c_ Q'. 

We will show that F ( A ) =  Q'Q'-~, f l (A)=/3 ,  a = 1/600 satisfy the require- 

ments. We begin by showing that Q is a B, /3 invariant R-set.  

{q E Q': Y2Bq C_ Q'} C {q ~ Q': Bq C_ Q}, and so 

/z ({q E Q':  Bq C_ Q })> (1 - /3/2) /z  (Q')  by (iv) 

~({q E Q:  Bq C_ Q})=> (1 - /3/2) /z  ( Q ' ) - / z  ( Q ' -  Q)  

(1 -/3)/.t  (Q)  by (iv). 
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Since O towers almost as much of the space as O '  towers, we now need only 

see O is open. So suppose q, ~ O, q, ---> h U H. If h ~ O '  then h ~ O. Hence we 

may assume q. E O',  since O '  is open. Then I x .  ~ y2 so that x.q. ~ O'. Since 

y2 is compact we may find a convergent subsequence x,,---> x ~ y2. Then 

x.,q., ~ xh and xh ~ O' since O '  is open. Therefore h ~ O, so O is open. 

(A)* Proceed as in (A) to find a O tower Q with /z (17) > /z (Z)2-~ and 

K Q ' V  C_ Z. 
(B)* The proof of Lemma 2.11 is almost unchanged. J C C is no longer 

restricted; however we now require W to be a KQ' base. Choose W,, V,,J, 
satisfying (1), (2), (3) of (B). By (A)*, KQW~ C Z. Set D* = D - {e}, ff'~ = QW~, 

if', = O'w,.  
(C)* Suppose W~, . . - ,  W,, have been chosen such that 

(4), 2to(L~) > (1 - fl)to(M,), i = I , - . . , m  

where M, = I,.Ji=~ ,,~z, L, = M, - D 'M, .  Notice that the translates of L~ by K are 

disjoint. 

Suppose that W,+I satisfies 

(5),. ,, 4to(rW,.+, N D ' M , , )  < to (if',,,+,). 

Then (4)m+1 holds also. The estimates are those of (C) except 

(8)* to(L~ nD*lTC,.§ by Proposition 1.2 

= w (lb',.§ n D*M.~) 

--< to(if'm., n D * M . ) +  . , ( ~ m . ~ -  ~ .+ , )  

< ~to(W-.,) + ~0to ( i f - . , ) .  

(D)* W, may be chosen satisfying (5), until ~ (KM.)>= 1/100/z(V). Suppose 

W~,i = 1 , . . . , m ,  satisfy (5), and lO0tz(KMm)<lx(Q). Write M = M, .  Set 

f (x)  = ~ (if', n DM)x~.(x)to(ff'~)-', x E V. 
i = l  

Then 2.6 (9) follows as before. 

(10)* ~o(DM n r~,)_< w ( K Y M  N ~,',) 

= to(kKYM n kff'~)<= ~ ( K Y ~ M  n kff',), 
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(11)* 

f~ f(x)d#(x)= 

tz (KY2M) <_ 

C. SERIES 

i.t(~ A KY2M)>-tz(~ N KY2M N J, IYG) 

= fs, to(9~ n Ky2M n kt, V,)dk 

= fs t~ n kVd,)dk 
z 

- fs, t~ n (k~4 - ~))dk 

>= e,to (DM n IYY,) 
- ( 1  - 

oj (l~z, n DM)/~ (9,)to (if ' ,)- '  
i = l  

to(lYG n PM)e, (1 - "r)-' by (9) 
i = l  

(1 - 3,)-'[/.t (V, n KY2M)+ e , ( 1 -  8 ) to (~ ) ] '  
i = 1  

(1 - , y ) - l [ ~ , ~  (KY2M) + (1 - B)/Blz (V)] by (9); 

~ l.t(KY2~(/j) 
i = 1  

<- ~ I~(KQ'Wj) <-- ~ (1 + �89 
j = l  j = l  

Hence 

by (iv) 

(l+fl/2)to(M)<-(2+[3)/(1-fl) ~ to(Lj) by (C)* 
j = ,  

(2+ fl)/(1 - fl)lz(KL)<= (2+ fl)/(1 - fl)l.t(KM). 

Israel J. Math. 

by (3) and (10)*; 

by (11)* 

fr.f(x)dlz(x)<-_ 1/(1 y)[(2 /3)/(1 /3)100-'+ (1 B) /8] /z(9)  I + I 

</z  (V)/16 by (ii), (iii) and (vi). 

We conclude as in (D) that we may choose V,.+,, W=+, satisfying (5).,+,. 
(E)* By estimates similar to those of (E), using (4)., (C) and (iii) we obtain 

I.t (KL.) >- I.~ (9)/300. 

In (F)* we find L, _C L. so that to(L1) > (1 - fl)to(L.) and so that the sets kLj, 
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k E K, are A A - ' ,  ed4 invariant. By 2.8* there is a KA tower if" _C KL1 with 

~, ( if ' )  > tz (Z)/600. 

(F)* Let 

Q, = {q E Q: rp(AA-')q C_ Q, Vp E a(K)  t3 a(K)-l}, 

02 = {q @ Q: rk,(zp(AA-~)) Yq C Q, Vk'  E K, p E a(K)  U a (K)-'}. 

Then 

Set 

As in (F): 

(13)* 

(14)* 

A(Qz)>(1- f l /2 )A(Q,)  and 

Z (YQ - Q2) .z ( Q , _  Q2) --< flA (Q). 

M = 0 r162 M, = 0 O,w,, i =  1,2, 
i = i  ] = i  

L = M - D * M ,  L , = M i - D * M i ,  i = 1,2, 

A A  -~(k (M2 - D *M)) C_ kL~, Vk E K, 

to(M2- D *M) > o~(L ) -  fifo(M), 

(15)* w ( L 1 ) = w ( M ~ - D * M ) + o J ( D * ( Q - Q 1 )  (.J W~fqLl) 

i = 1  

i = 1  

w ( t  ) + {3to(M). 

Hence to(M2-D*M)/w(L,)>= 1 - e , / 4  by (14)*, (15)* and (iii). 

Case 2: L - - R .  

It shou/d be clear by now that we can combine the methods of w and those of 

Case 1 above to prove Theorem 1.8. We note briefly the points at which the 

argument is modified. 

LEMMA 2.3**. This is similar to Lemma 2.3*. We work with an interval K C R 

which contains p (F) tJ p (E) and assume K is a union of a finite number o[ sets on 
which a is continuous. 
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PROPOSITION 2.5**. With the notation of 2.5, Ki no longer determines an 

I(T(1 + 8))B tower. Instead we replace B by a larger set B '  which is chosen 

sufficiently invariant under a large set in H to ensure that {et (Si )x : x ~ V} form an 

I ( T ) B  tower which fills most of the space V, where Si is the left endpoint of K~. 

The proofs of 1.7, 2.7, 2.8, 2.10, 2.11 are unchanged. The remark following 

2.8* still applies. 

PROPOSITION 2.6**. In (C) we replace the set Wm§ n E(2T)Mm by Wm§ n 

E (2 T)  YMm, Y C_ H being chosen to ensure M - E (2 T)  Y M  has disjoint translates 

under E(2T),  and obtain estimates as in the compact case. The estimates of (D) 

are as in Case 1 and we treat E (  - 2T) similarly. In (E) we must ensure T'Ln is an 

I (T ' )  base and this may be done by requiring Q to be sufficiently invariant. The 

estimates of (F) then follow as in Case 1. 

w Hyperliniteness of group actions 

A measure preserving action of a group G on a probability space X, 

generates a natural equivalence relation on X. An equivalence relation on X is 

said to be countable (finite) if there are at most countably (finitely) many points 

in each orbit, and hyperfinite if it is an increasing union of finite relations (cf. e.g. 

[6]). It is known that all free measure class preserving actions of discrete solvable 

groups generate hyperfinite equivalence relations [1]. To generalize these ideas 

for continuous groups and uncountable relations we make the following 

definitions (see also [4]): An equivalence relation R is countably hyperfinite if it 

is the union of an increasing sequence of finite relations. Let J. - - { 1 , . . . ,  n}, 

n E N, J0 = [0, 1]. A relation R on X, /~ is cyclic if 

(1) X ~  0 Y-x  J-, where Y . ~ N ( X ) ,  

the union is disjoint, and the isomorphism is measure theoretic in the sense that 

there is a measure A, on Y, so that A, x h, = /z  Iy.• where h, is Lebesgue 

measure on J,, and if 

(2) x - y  r x = (y,, j ,) ,  y = (y. , j ' ) ,  where y, E Y,  a n d j . , j ' ~ J , .  

A relation R is hyperfinite if 

(1) 3 E  E ~ ( X )  such that the saturation of E is conull in X and R It is 

countabie, 

(2) R is the union of an increasing sequence of cyclic relations. 

PROPOSITION 4.1. Let R be a hyperfinite relation on a measure space X,  ~ and 
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let E E ~ (X )  have conull saturation such that R In is countable. Then R I~ is 

countably hyper]inite. Conversely, if 3 E  ~ ~ (X )  with conull saturation such that 

R I~ is countably hyperfinite then R is hyperfinite. 

PaOOF. T h e  detai ls  are fairly s t ra ight forward.  T h e  result  is in [4]. 

THEOREM 4.2. Let G be a l.c.s.c. R-group, and X be a standard Borel G space 

on which G acts freely preserving a probability measure I~. Then the relation R 

generated by the G action is hyperfinite. 

PROOF. By [4], 3 E  E ~ ( X )  with conull  sa tura t ion  and so that  R I~ is 

countable .  Le t  Bo = {e} C B 1 C  Bz C �9 �9 �9 be  a sequence  of c o m p a c t  sets with 

I_J7=1 B, = G. Suppose  induct ively we have  re la t ions  Ri, i = 0 , . . . ,  n on X, and  

compac t  A~ C G, such that  

(1) R,  ~_ R~_~ D_ . . .  D_ Ro where  Ro is the  trivial re la t ion,  

(2) R~ is cyclic, i =  1 , - . . ,  n, 

(3) /~ ({x E X :  A,_IA ;~-lX ~ R , x } ) <  2-', i = 1 , - . . ,  n, 

(4) x - , y  f f  x = h y ,  h E A , A ;  ~, i = l , . . . , n ,  

(5) B, C A , ,  i = 1 , . . . ,  n. 

These  condi t ions  cer ta inly hold for  Ro, B0, A0 = {e}. W e  const ruct  R,+~, A,+~. 

Choose  A,+I  to  be  an A . A  ~, 2 -<"+2) invar iant  R - s e t  with A .  t.J B,+~ _C A,+~. Find 

an A.+~ t o w e r / ~  C X on a base  E such that  / z ( / ~ ) >  1 - 2  -<n+2). Set 

C = {g E An+l: hg EA.+~Vh E AnA :~}. 

Let  Y be  the  sa tura t ion  of CE under  Rn. If y E Y, then  y - ,  gx where  g ~ C, 

x @ E. By (4), y = hgx, h E AnA :1. By choice  of  C, y E /~ .  T h e r e f o r e  Y _C/~. 

Def ine  Rn+~ on Y to be  the  re la t ion x ~ . + ~ y  r x = axo, y = bxo where  

a, b E An+x, Xo E E. Def ine  R.+~ on X - Y to be  the  re la t ion R, .  R,+~ is clearly 

cyclic by Propos i t ion  1.1. Suppose  x, y E Y and x ~ , y .  Then  x = az, y = bz, 

z ~ C E ,  a, b E A n A ~ ,  z = g z o  where  g E C  and z 0 E E .  Thus  x = a g z 0 ,  y =  

bgzo, and ag, bg E An.~, so x ~,+~ y. H e n c e  R ,  _ Rn+1. 

Suppose  x ~ ,+~y.  If x , y  E X -  Y then  x ~ , y  and so x = hy, h E A , A : ~ C  
- 1  A,+~A,.~. If x , y ~ Y  then x = a z ,  y = b z  where  z E E ,  a , b ~ A , + ~ .  T h e n  

x = ab-~y. 
x ~ CE ~ A , A  :ix C_ R,+ax. 

H e n c e  

({x ~ X :  A , A  ~lx ~ R ,  +~x }) <= ix ( X  - CE)  <= 2 -<" +~) + 2 -<n +~) = 2 -<n+ ~). 

R,+~,A,+I  now satisfy (1)--(5). It is c lear  that  R = U,=~Ri ,  so that  R is 

hyperf ini te .  
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Any countably hyperfinite equivalence relation arises from a Z action, by [6] 

theorem 4.1. The corresponding result in the uncountable case is 

PROPOSmON 4.3. Let R be a hyperfinite equivalence relation on a space X, tz, 

such that there are uncountably many points in each orbit. Then R is generated by a 

flOW. 

PROOF. Choose E ~ ~ (X) with conull saturation so that R IE is countable 

and hence hyperfinite by Proposition 3.1. Let p : X ---> E be any measurable map 

such that p ( x ) - x  a.a. x E X .  Let Eo={e ~ E :  p-~(e)---[0, 1]} (~- meaning a 

measure theoretic isomorphism of [0, 1] with Lebesgue measure and p-l(e)  and 

the induced fibre measure). Clearly p,(I.t)(Eo)>O. Find also a map 

q:p-l(E-Eo)--->Eo preserving R. It is clear that X ~ l X E o  (cf. e.g. [15] 

appendix) and that ( t , x ) - ( s , x )  Vt, s E I, x E Eo. Find a transformation T 

generating R I~o. The flow built on Eo, p,tx, T under the constant function 1 

generates R. 
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