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THE ROHLIN TOWER THEOREM AND HYPER-
FINITENESS FOR ACTIONS OF CONTINUOUS
GROUPS

BY
CAROLINE SERIES'

ABSTRACT

We prove the Rohlin tower theorem for free measure preserving actions of
locally compact second countable solvable groups and almost connected
amenable groups. This theorem was known for l.c.s.c. abelian groups and was
recently extended by Ornstein and Weiss to discrete solvable groups. We extend
their methods to the continuous case, using the structure theory of the class of
groups under consideration. As a corollary we obtain that free actions of such
groups generate hyperfinite equivalence relations.

Introduction

Let T be an aperiodic measure preserving automorphism of a probability
space X. The Rohlin tower theorem states that for any positive integer n and any
€ >0 there is a Borel set E C X such that the sets E, TE, -+ -, T"E are disjoint
and fill X to within e. This result is of crucial importance for two results: Dye’s
theorem [2], that is the hyperfiniteness of the equivalence relations generated by
aperiodic transformations; and the isomorphism theorem for Bernouilli shifts
113]). Generalizations of Rohlin’s theorem to non-measure preserving transfor-
mations and more general groups have been given by various authors; in
particular Krieger [7] extended it to measure preserving actions of discrete
abelian groups and Lind [8], to n-dimensional flows. Dye [3] proved the
hyperfiniteness of equivalence relations generated by free actions of countable
abelian groups, and Connes and Krieger [1] proved hyperfiniteness for free
measure class preserving actions of countable solvable groups. Ornstein and
Weiss [14] have given a more constructive proof of the Rohlin theorem for
solvable groups. (For a precise statement of the Rohlin theorem see §1 below.)
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The main result of this paper is that the Rohlin theorem holds for finite
extensions of continuous solvable groups and for almost connected amenable
groups. Our techniques are an extension of those used by Ornstein and Weiss in
the discrete case.

In §1 we give a precise statement of the Rohlin theorem and prove some
general results about Rohlin towers. We show that if K — G — G /K is an exact
sequence of locally compact second countable groups where K is compact and
G/K is an R-group (i.e. the Rohlin theorem holds in G/K) then so is G. §2
contains a detailed proof that if H is an R-group then so are split extensions of
H by R. In §3 we show how to modify this to deal with arbitrary extensions of H
by R or a compact group. As corollaries we obtain the results stated above. We
are indebted to J. Feldman for pointing out how to obtain Corollary 1.11.

In §4 we show how to extend the notion of hyperfiniteness to uncountable
equivalence relations (cf. also [4]) and show that free actions of R-groups
generate hyperfinite equivalence relations. Finally we show that any free action
of a continuous R-group is weakly equivalent to a flow.

§1. Rohlin towers

Let G be a locally compact second countable (l.c.s.c.} group and let X be a
standard Borel G space (cf. [9]) with an invariant probability measure u. Let
F C G be a Borel set. An F-base in X is a Borel set V C X such that FV is
Borel, u(FV)>0, and such that the sets fV,f € F, are disjoint. An F tower
V C X is aset V =FV, where V is an F base. The following result shows that
the measure structure of a tower is exactly as expected.

ProrosiTion 1.1. Let G be a l.c.s.c. group and let X be a standard Borel G
space with invariant probability measure u. Let A be a left Haar measure on G,
and let F C G be a Borel set with A\(F)>>0. Let V be an F tower in X on a base V,
and let F X V have the Borel structure induced from G X X. ThenP: F X V — v,
P(f,v) = fv, is a Borel isomorphism and there is a measure v on V so that
P.(A X v)=p |v. v will be called the measure induced on V by V.

ProoF. P is a Borel bijection and V is standard, hence P is an isomorphism
(cf. [9]). )

Let p: V— V be projection, p(fv)=v, and set v =p, a/A(F) where g =
7 l‘-,. Let g = fvu.dv(v) be a decomposition of g with respect to p. Choose a
countable dense set {g;: i € Z}in G such that, up to a nult set, G = U7_, g.F. For
g€G, let §: F—>gF be the map g(f)=gf Then for v a.a. vEV, §,u, is a
measure on gF. We will show that for » a.a. vE V,
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(1) Gisko = gixpho On gFNgF VijEZ

or equivalently
o~

@ g;'8suo=u, on g;i'gFNF Vij€EZ.

Suppose h EG and kFNF=E#J. Then h: h'E—>E and h'E,E CF.
We also have h: h 'EV —>EV, h(x)=hx, and h ,u ’,;lEv= " lgv. Thus

[ -
\Z

EvdV(U) =un !EV = E*;.L ,h“EV

=E*j Mo
\4

ev for v a.a. v € V, and so (2) holds outside a » null

,,-:Evdp(v)=fv h oty |evdr (v).

Therefore u, !EV = pto
set N in V.

If v N then by (1) we may define a measure @, on G by i, |gr = & Mo flv IS
clearly invariant under left translation by each g;. The weak continuity of the left
regular representation ensures g, is left invariant, so that g, = f(v)A where
f: V=R is measurable. f(v)= u,(F)/A(F), and for W € B(V),

ME) [ av@)= g W)= | (Pv() = [ A(F)f(0)dv (o)

so that f(v)=1aa. vE€V,and g = A [Fx v.

ProrosiTioN 1.2.  In the situation of Proposition 1.1, let Q C G be an open set
and let V, W be Q towers with induced measures n, v respectively on V, W. Let
T:. V— W be a measurable bijection of the form T(v)= B(v), B(v)E G. Then
AB())dT .,m(Tv)= dv(Tv) where A is the modular function of G.

Proor. Let {K,} be an increasing sequence of compact sets with UK, = G.
Let V,={v € V: QB(v)C K.}. Then UV, = V. It is sufficient to prove the
result for V,, T(V,), i.e. we may assume QB(v)C K for some compact set K.
Just as in the proof of Forrest’s theorem {5] II we may find ¢ >0 and an open
ball B, C X such that n(B.)>0 and so that x ~y & x =gy, g €K, is an
equivalence relation on B., in which each orbit is a compact set in X. Find a
measurable section F for this relation which is contained in V. Then as in [5] F is
a K base in X.

If n(F)# n(V) we may repeat the argument on V —F. An exhaustion
argument shows that V = UF, (up to an % null set) where each F, is a K base.
It is therefore enough to see that T (7 IF) =v lT(F) when F is a K base.
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Let E=T(F). Say ACKFNQE. Set A,={k€K:kvEA}, A,=
{gEQ:qw EA}. Then A, = A B(v). For if a €A, then a=kf=qe =
qB(f)f' and qB(f') € K, hence f = f’. Now

p(A)= [ A(A)an©)= [ AArwBENInE)= [ ABEM Arwdn ()

=L A(B(v))A(A.)dT ,n(w)

and
/.L(A)=L A(A.)dr(w).

Say B C E. Then QB C KF N QE. Hence, applying the above with A = QB,
we have [FA(B()A(Q)AT ,n(w)= [eA(Q)dv(w) so that A(B(v))dT ,n(w)=
dv(w), where w = B(v)v.

If G is a lc.s.c. group acting freely on X and if D C G is a compact
neighborhood of the identity, the existence of D towers in X is guaranteed by
Forrest’s theorem [5]. We give a stronger version of this result which will be of
use later.

ProrosiTioNn 1.3. Let G be a l.c.s.c. group acting freely on a standard Borel
space X with invariant probability measure . Let D1, D, be relatively compact
open neighborhoods of e € G, D, C D,, and let A € B(X), u(A)>0. Then there
is a D, base B C A such that p(D,BNA)>0.

Proor. We follow the method of [5]. By [10] lemma 2, we may assume that X
is a separable metric space with metric d and that G acts continuously. Choose
E, a relatively compact symmetric open neighborhood of e € G such that
D,CE..

For ¢ >0, set

A ={xEX:d(x,gx)=¢ > gE€E, or g&EEy}.

Asin [5], A, isopen and X = U, ., A.. Pick a >0 such that u (A, N A)>0. A,
is the union of a countable number of open balls of radius less than a/2. Pick
such a ball S, C A, with u(S. N A)>0.For§>0,set B, ={x € X:d(x,gx)=
8 > g€D, or g&E,}. Again B; is open and X = Us-0Bs. Choose 8 >0
such that (S, N A NBg)>0. Choose a B/2 ball S; CS. N B such that
©(S; N A)>0. Define an equivalence relation on S5 by x ~y & x =dy,
d € E,. This is an equivalence relation since E, is symmetric and since
diam(S;) < a and S, C A.. Since E, is compact the quotient space Sp/~ is a



Vol. 30, 1978 THE ROHLIN TOWER THEOREM 103

standard Borel space (cf. [11] lemma 2). Choose a measurable section T: S5/~
— S, so that if x € S,, and orbx N A # J, then T(X) € A where X is the image
of x in Sg/~. Set B=T(Ss/~)NA. SsNACE;B, so u(E,B)>0. Say
XxES;NA. Then x =db, d € E,, b€ BN A, by the way in which T was
chosen. d(x,b)<pB andsod € Dy, Ss N A C D,B. Thus u(D:BNA)>0.B is
the required base.

In the case of a single transformation, or action of Z, the Rohlin theorem gives
the existence of {0,1,---, n} towers in X which fill X to within any prescribed
amount, for arbitrarily large n. We now formulate a Rohlin theorem for an
arbitrary l.c.s.c. group, following [14]. G is a l.c.s.c. group, X astandard Borel G
space with invariant probability measure u, A a left Haar measure on G.

DernNiTiON 1.4. Let FC G be compact, and ¢ >0. KC G is F, ¢ (left)
invariant if A (K) <« and

A{k €K: fk e KVfEF})>(1-¢e)r(K).
A set A € B(X) is F, ¢ invariant if
p(x€A: xec AVFEF)>(1-e)u(A).

DerinmmioN 1.5, A relatively compact open set F C G is an R-set if for any
free Borel measure preserving action of G on a standard probability space X,
and for any £ >0 there is an F-tower V C X with p(V)>1—¢.

DEeriniTiON 1.6, G is an R-group if for any compact sets E, F C G and any
e >0 there exists an R-set Q C G such that E C Q and Q is F, ¢ invariant.
Usually we will abbreviate this by saying there exist arbitrarily large arbitrarily
left invariant R-sets in G.

It is known that discrete abelian groups are R-groups [7] and that R" X Z™ is
an R-group [8]. In [14] it is shown that if H is a discrete R-group then so are
extensions of H by discrete cyclic groups. As a corollary all solvable discrete
groups are R-groups [14]. We extend this result to the continuous case: in §2 we
prove

Tueorem 1.7. If His an R-group and G a split extension of H by R, then G is
an R-group.

In §3 we extend this to more general extensions: a piecewise continuous
extension G of H by L is an extension such that for each compact set K CL
there is a partition K = U[_,K,, and a section a: L — G, so that « | is
continuous for each i. We prove:
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THEOREM 1.8. If His an R-group and G a piecewise continous extension of H
by R or a compact group K, then G is an R-group.

The methods of [14] and Proposition 1.1 give a similar result for extensions of
H by Z (notice that such extensions necessarily split). We also observe the
following:

ProposITION 1.9. Let G be a l.c.s.c. group and let K C G be a compact normal
subgroup so that G/K is an R-group. Then G is an R-group.

Proor. Let X, u be a standard probability G space with G acting freely.
Since K is compact the space X of K orbits is a standard Borel G/K space (cf.
[11] lemma 2) and the projection p: X — X induces an invariant probability
measure @ on X. Let A be a left Haar measure on G and let g: G — G/K be
projection. g , A is a o -finite left invariant measure on G/K, since K is compact.
Let E, F C G be compact and let 8, £ >0 be given. Choose a q(F), ¢ invariant
R-set A C G/K with q(E)C A. Choose an A base V C X with i(AV)>1-38.
Let T: X— X be a Borel section of q. Then T(V) is an AK base in
X, u(AKT(V))>1- 6 and AK is open, relatively compact, F, ¢ invariant, and
E C AK.

ProrosiTion 1.10. Let G = U}, G, where G, C G, C - - - are open subgroups
of G which are R-groups. Then G is an R-group.

Proor. It is enough to observe that the Haar measure on G, is the restriction
of Haar measure on G, and that any compact set J C G is contained in some G,.

We are now in a position to apply the structure theory of l.c.s.c. groups to
obtain the following:

CoroLLary 1.11. Any lc.s.c. abelian group is an R-group.

Proor. By 1.10 it is enough to consider compactly generated abelian groups.
Any such group is of the form K X R" X Z™, where K is compact. The result
follows by [8] and 1.9.

CororLary 1.12.  Any solvable Lc.s.c. group is an R-group.

Proor. First assume G connected. By Gleason’s theorem there is a compact
normal subgroup K C G so that G/K is a solvable Lie group. By 1.9 it is
sufficient to see G/K is an R-group. G/K is built up by a finite number of
extensions of an abelian group by R or a compact group. Since all the groups are
Lie groups these are all piecewise continuous extensions. The result follows by
1.7, 1.8 and 1.11.



Vol. 30, 1978 THE ROHLIN TOWER THEOREM 105

If G is not connected, let G, be the identity component. G is an extension of
G, by a discrete solvable group; hence we need only consider extensions of
R-groups by discrete abelian groups. The result follows as in [14], or from 1.7,
1.8 and 1.10.

CoroLLARY 1.13.  Almost connected amenable l.c.s.c. groups are R-groups.

ProoF. G almost connected means G /G, compact. 1.8 reduces to the case of
connected amenable groups, and Gleason’s theorem and 1.9 reduces to con-
nected amenable Lie groups. These are precisely those groups for which
G/rad G is compact, where rad G is solvable. 1.12 and 1.8 give the result.

§2. Rohlin’s Theorem for split extensions of R-groups

In this section we prove Theorem 1.7. Throughout, H is an l.c.s.c. R-group
and G is a split extension of H by R,G = R®, H where 7,(h)=1t"ht. A will
denote a left Haar measure on H and h will be Lebesgue measure on R. X will
be a standard Borel G space, and G will act freely preserving a probability
measure u. We write I(T)=[—T,T]. h x A is a left Haar measure on G.

Remark 2.1. The map RX H — H, (t,h)— 7.(h) is necessarily Borel and
hence continuous by [12] proposition 1.4. The topology on G is therefore that of
Rx H.

Remark 2.2. If H is discrete and (¢, h)— 7.(h) continuous, then we must
have 7,(h)=h, so that G =R X H.

We will give our proof in the case of continuous H. At those points in our
argument where we use the continuity of A it will be seen that we could equally
well use 7 = identity, so that we in fact prove the result in case H discrete also.

Lemma 2.3.  There are arbitrarily large arbitrarily left invariant open relatively
compact sets in G of the form I(T)A, where A C H is an R-set.

ProOOF. Suppose compact sets E,F C G and ¢ >0 are given. Find compact
sets E,,F;C H and S, T >0 such that E C I(S)E,, F C I(T)F,. Pick S,> S so
that T/Se<1-(1—¢)”, and choose A CH to be an F,= U, 57 (F),
1—(1-¢)" invariant R-set containing E;.

Let B={a€A:fa€ AVfEF,}. A(B)>(1-¢)”A(A). I(T)F.I(So— T)B
C I(So)A. Moreover
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h X A(I(So— T)B) = 2(So— T)A(B) > 2SA (A ) (1 — £)"*(1 — T/S,)
>28A(A)(1-¢)
= (1-e)h x A(I(S)A).
FC I(T)F, and E CI(S))A so that I(S;)A is sufficiently invariant.

CoRroOLLARY 2.4. To prove Theorem 1.7 it is sufficient to show that sets of the
form I(T)A are R-sets in G whenever A is an R-set in H.

Theorem 1.7 follows from the following two results:

ProposITION 2.5. Let A C H be an R-set and let T >0, £ >0 be given. Then
there exist a relatively compact open set J = J(A,T,e)CH, S=S(A,T,e)>0,
and a = a(A, T, £)>0 such that if B is a J, « invariant R-set in H and T'> §,
and if V C X is an I(T")B tower, then there is an I(T)A tower W C V such that

p(W)>(1-e)p(V).

PROPOSITION 2.6. There exists a >0 so that for any R-set A C H and any
T >0, there are a symmetric open relatively compact set F = F(A, T)C H, and
U=U(AT)>0, B=B(A, T)>0 such that in any I(U)F, B invariant set
Z € B(X) withu(Z)>0, an I(T)A tower W may be found with u (W) > au (Z).

Proor oF THEOREM 1.7. It is sufficient to show that given an R-set A C H
and T >0, £ >0 there is an I(T)A tower V with u(V)>1-¢.

Choose n so that (1—a)" <(1—¢)". Set &, =1—(1—¢)"* Choose A so that
x/(1-x)<A for 0=x =(1-¢£)" Inductively find R-sets A, C H, and T, >0,
¢ >0,r=1,---,n, so that

1) A=A T.=T, ¢=a(A,Te),

(2) A, is J(A, T, ¢.), a(A, T, &) invariant and T, > S(A, T, ¢)),

3) I(T..)A . is I(U(A, T.))F(A, T.)) ", (1/A)B(A, T,) invariant,
where we use the notation of 2.5, 2.6. The choice of (3) can be made using the
method of Lemma 2.3.

By Proposition 2.6 find an I(T,)A, tower H, with u(H,)>a. If
w(H,)>(1-¢)?, stop. Otherwise u(H,)/u(X—H,)<A and from the
T(U(A.-s, To-)F(An-i, To))) ', B(An-s, Too1)/A invariance of I(T,)A.,, we see
that X — H, is I(U(A.-1, Too1)F(An-y, Ta-y), B(An-s, Taoy) invariant. Use 2.6 to
choose an I(T,.\)A.- tower H,.,C X - H, with p(H._,)>apn(X - H,).
u(X~-H,-H,)<(1-a) If u(H, UH,.;)>(1-¢)", stop, otherwise con-
tinue in this way. The process terminates on or before the nth step. We obtain
disjoint sets H,, H,_,, - -, H, so that
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4) H, is an I(T)A, tower,

®) w(UiH)>(1-¢)"

Use Proposition 2.5 to find I(T)A towers V, in each set H, with
p(V.)>u(H)1-¢)". Then UV, is an I(T)A tower V with u(V)>
p(UiH)(1-¢)”>1-¢.

We turn to the proof of Proposition 2.5.

Lemma 2.7. Let Q C Hbe an R-set and let ¢ >0. Let Z € B(X), n(Z)>0,
be QQ 7', £ /3 invariant. Then there is a Q tower V C Z with u (V) > u(Z)(1 - ¢).

ProoF. Let Z'={z€Z:hz€ZVhEQQ'}. u(Z)>1-¢e/3)u(Z).
Choose a Q tower W C X so that u(Z— W)<3eu(Z). Choose a with
1- & <a <1-2&/3. Let » be the measure induced on the base W of W by W.
Suppose

z
W(Z' NgW) = 9){%0—52 Vg € Q.

Then
u(Z'N W)= au(2),

so w(Z)A-2e/3)<pu(Z' N W)<(1-2¢/3)u(Z). Hence 3Iq,€Q such
that  »(Z'NgeW)>(au(Z)/A(Q), and v(g:'Z'N W)>au(Z)/A(Q).
Q(qs'Z’NW)C Z and q5'Z'N W is a Q base, also

wQEZ W)= [ 1@z 0 WY@ > au(Z)>w(Z)(1- o).

LEmMMA 2.8. Let ACH be an R-set, and let T>0, ¢ >0, § >0 with
(1+8)(1—¢€)<1 be given. Let V C X be an I(T(1+ 8)) tower on a base V such
that, with respect to the induced measure w on V, the setstV are AA™", ¢' invariant
whenever |t | = 8T, where ¢’ = 1{1—(1+ 8)(1 — ¢)}. Then there is an I(T)A tower
W C V with w(W)>p(V)(1—¢).

Proor. Set U=I(8T)V,V,=tV,Vi={xEV,:hx€ V,Yhe AA},U'=
Uy =sr V. Then U’ is measurable and

1) o(V)z(1-¢e(V),
) p(U)z(1-e)u(0).

By Lemma 2.7 there is an A tower Y C U on a base Y with u(Y)>

(1-3&")u(U), and we see from the proof of 2.7 that we may suppose
YCA'U.
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p(U'NY)>(1-4e)u(U) by (2). Therefore 34, ER, |t| = 8T, such that
3) o(V,NY)>(1-4e)o(V).

Now A (A'V/,N Y)C V, by the definition of V/,. If x € V/,N Y, then x = ay,
aE€EA,y€E Y. Moreovery =a''s,a’'€ A, s€ U'; hence s =a’a”'x € V,, and
so s € Vi, Thus

@) VIi,NYCAA'V/,NY)C V..
The sets ta(A'Vi,NY), [t|= T, a € A, are disjoint and
p(I(TAAV,NY)=2Tw(A(ATV/,NY))
22T(1-4)w(V) by (3)and (4)

= (1-42) 317 # (D)

=(1-e)u(V).

CoOROLLARY 2.9. Let A, T, e b,e' be as above. Let BCH be a
Upssrm.(AA ™), &' invariant R -set in H. Then given any I[(T(1+ 8))B tower V
there is an I(T)A tower W C V such that u(W)>pu(V)(1-¢).

Proor. Let V be the base of V. It is easy to check that the sets tV, |t| = 6T,
are AA ™, ¢’ invariant with respect to the induced measure on V. Then apply the
Lemma.

PRrROOF OF PrOPOSITION 2.5. Let ACH bean R setandlet T>0, £ >0 be
given. Choose ¢’ so that (1-¢')*>1—¢, and 8 >0 so that (1-¢')(1+38)< 1.
Set S=TA+8)e', J=U,zern(AA™), a =i{1-(1+8)(1-¢')}. Suppose
V C X is an I(T")B tower where T'> S and B is a J, a invariant R-set in H.
Divide I(T") into disjoint intervals K; of length 2T (1 + 8) so that the remaining
part has length <2T(1+ 8)<2¢'T'. Each K; determines an I(T(1+ 6))B tower
V.. Apply Corollary 2.9 to find I(T)A towers W,CV; with u(W;)>
p(V)(A-¢) p(UW)>1-e)p(UV)>1-&Yu(V)>1-e)u(V). UW
is the required I(T)A tower.

LemMMA 2.10. Let P, Q be probability spaces with measures p,q and suppose
E€eRB(PxQ), pXq(E)>0, and 8,0<8 <1, are given. Then there is a set
N € B(Q) so that q(N)>0 and esssup,emq(E N{s}x N)>8q(N).

ProOF. Setm = p X q and choose ¢,¢'>0sothate’'<1-8ande/(1-¢)<
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¢'. Find sets P, € B(P), Q. €B(Q), i=1,---,n, with m(EAU;., P, x Q)<
em(E). By subdivision we may asume U;., P, X Q; to be a disjoint union of
rectangles.

Ifm{P,XQ —-E)=Ze'm(P, X Q), Vi then

m(Llj P.»XQi—E)és’m(L:J P;XQ.-)ée’(l—e)m(E)

and em(E)Z ¢'(1 — £)m(E) which is impossible.
Choose i, with m(P,x Q,~ E)<e'm (P, % Q,). Then

ey L m(E N{x}x Q)dp(x)=m(E N Pyx Q)= (1— &")m(P,x Q).

fo

esssup m(E N{x}x Q,) = 8q(Q,)

sEP.n

> | mEN X Q)= 8m(Pox Q0.

This contradicts (1), so the result is proved.

Lemma 2.11. Let Q C H be an R -set and let V C X be a Q base with measure
vinduced by QV. Let T >0, 8 >0, y >0, §;> 0 be given with § <1— v, and let
P C Q be compact with A(P)>(1—y)A(Q). Then there are an I(T)Q base
WC X and a set JCI(8,) and V,C V so that

(1) v(V)>0, h(J)>0,

(2) PV,.CJIQW,

3) @(tQW N QV)>w(QW) Vs € J,
where w is the measure induced on QW by the I(T) tower I(T)QW.

Proor. Use compactness of P and continuity of 7 to find a symmetric
neighborhood U of e € H, and ¢ >0, so that 7, (PU)U C Q for [t|=¢; and so
that

I(6)UCI(T)Q and e <6é..

By Proposition 1.1, u(UV)>0. Apply Proposition 1.3 to find an I(T)Q base
W, C UV such that u(I(e)UW,;N UV)>0. Let n be the measure induced on
W, by the I(g)U tower I(¢)UW,. Choose 8’ with §/(1 — y)< 8’ < 1. By Lemma
2.10 there is a set WC W, so that n(W)>0, and h X A(F)>0, where
F={(tu)eI(e)x U: n(uW N UV)>8&'n(W)}. Let m: QV — V be projec-
tion andset V, = w(FW N UV). Then »(V,)>0.SetJ ={r €R: (t,u) € F some
u € U}. Certainly h(J)>0 and J C I(3,). Moreover
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SEV,> us=tuw forsome (t,m)EFFueUweW
> ps = pu~'tu,w = tr,(puYu,w € JQW whenever p € P.

Hence PV, C JOW.
Also

GQu)EIE)XUD{weW: tuwe UV }C{weE W:ipw EQV }Vp EP,

because ww = u;v,, wmevy, 0, € Vi ipw = 7_, (pu usui'tuw =
7. (pu )u,v, € QV,. Therefore

(tLu)EF > 8'n(W)=n(W N UV) = n(uW N UV,)
<n(pW N QV,)Vp P
> 8'A X n(PW)S A X n(tPW N QV)).

Since w = A X 7,

0(tQW N QV,) Z w(tPW N QV))Z 8'w(PW) = §'w(QW) ;‘J(gl) > 80 (QW).

REMARK 2.12. Notice that we may suppose U chosen so that x(QU)<
2u(Q)-

PRrOOF OF ProposITION 2.6. Let A C H be an R-set and let T > 0. We make
the following choices:

@ e=1-27%

i) 0<é<1,(1+8)(-e)<I;

(i) e1=i{1-(1+38)(1-e)}

(v) T'=T@1+38),

(v) 0<6<1, 1/6[1/50+(1-8)/8]<1/16;

vi) 0<y<l1,y<1-8;

(vii) T"=T'2+8);

(viii) >0, x — B> (1~ &1)(x + B) whenever x =3;
ix) QCHa U::,I:TT((:::;) m(AA )1 (AA™"), B invariant R-set;

(x) P CQ compact, A(P)>(1-7v)A(Q);

(xi) U C H asymmetric neighborhood of e € H, ¢ >0 so that 7. (PU)U C Q
for |[t|=e and A(QU)<2A(Q);

(xii) B such that (1-38)(1-8)>2""%

(xiii) Q'=QU.
We will show that F(A, T)= (QU)(QU)™", UA, T)=T", B(A,T)=pB, a=
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1/400 are suitable choices to ensure the conclusion of 2.6. For convenience the
proof is divided into a sequence of steps. Z € B(X) is an I(U)F, B invariant set
with u(Z)>0.

(A) We find a set Z" C Z so that all towers constructe i in the proof on bases
in Z" lie inside Z.

Set

Z'={z€Z:tz€EZV|[t|=T",
Z'"={z€Z:thz€ZV|t|=T", h € F}.

Then FZ"CZ and pu(Z")yz (1- B)u(Z). By Lemma 2.7 there is a Q tower
VCZ with p(V)=(1-38)u(Z) 2 (1-3B)(1 - B)u(Z) > u(Z)27" by (xii).
The base V of V may be chosen with VC Q''Z", hence Q'V C Z’ and
(TQ'VCZ.

(B) We fill most of Z with I(T")Q towers of a special kind. Use conditions
(vi), (%), (xi) and apply Lemma 2.11 repeatedly with an exhaustion argument to
find disjoint sets V; C V, and I(T")Q bases W, C UV, and sets J, C I(8T") such
that if v is the measure induced on V by the tower V, and ; the measure
induced on QW., by the tower I(T")QW,

(1) »(Vi))>0, & =h(J)>0, U, vi=V,

(2) PV, CJOQW,

(3) w:(1QW: N QV;)> 6w (QW,) VLt E J.

By (A), I(T")QW,C Z. For N € B(X), write N=QN. For §>0, set
E(S)=1[0,S], E*(S) = (0, S]. Since the sets W, are disjoint and since w; = w; on
LW, N W, we may without ambiguity define @ to be a measure on sets of the
form UW, or tW, where o I,w, = @, using 1.2 and unimodularity of R.

(C) We inductively choose bases W; whose R translates are sufficiently
disjoint to build large I(T’) towers.

Suppose that W,,---, W,, have been chosen such that

4): 2w(Li)> o (M), i=1,,m

where M, = U;., W, L, = M, - E*2T')M..
Suppose that W,,., satisfies

(5)m+1 40(Wps1 N EQTIM,) < @(Way),
(6)m+1 40 (W, .. N E(-2T)M,) < o(W,,.,).

We show that (4),.., holds also:
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Loii=(W,— EQTIM,)U(L,. — EQT")W.,...),
(7) T/ - I -3 Y/

O (Wni~ EQTIM,)Ziw(W,.), bY (5)m+1-
Also, by Proposition 1.2:
€)) @(Lw NEQRT)Wpit)= 0 (E(~2T)L,, N Wpas),

o(Lm —EQT)W,i)) = 0(Ln)— @(Ln NEQRT)W,..1)

>%w(Mm _%w(Wmi»l)

by (8), (4)m, (6)m.1. Hence 20w (L,.+1) Z @(M,,.1) by (7).

(D) We show that sets W, may be chosen satisfying (5), (6); until
100p (EQTIM,)>u (V) or 100u(E(-2T)M,)>u(V). Suppose W, i=
1,---,m satisfy (5), (6) and 100u (EQT')M, )< u(V). Write M = M,,. Set

f(x)= 2 o(W: N EQT)M)xv(x)o(W)", x€ V.
i=1

We estimate [of(x)du(x):
w(V) = (PVOA(QA(PY < (1~ y) " n (W) = (1~ y) e (W)
by (x), (1) and (2);
w (W, N V) > 8e.0(W;)
by (1), (3). Hence

&) dei0 (W) < p (Vi) < o (W) (1~ y) ™.
Write K = E(T"). JEQT')C K, Vi by choice of J.
(10) w(EQTM N W)= w(tEQT)M NtW,)= (KM NtW,), t€J,

a1 ,L(meKM);u(\ZnKMnLﬁc)=f o(V; N KM 0 1W,)dt
5

=f w(KMﬂtW,-)dt-f o (KM N (W, - V,))dt

2 sw(EQTYM N W,)— &:.(1 - 8)w(W,)
by (10) and (3).
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L f(x)du(x)= ; o(W; N EQT)M)u(V)w(W,)!

= i o(W,NEQT)M)e(1-y)" by (9)

== [Z ek + 3 aoW)a-a)] by an

=1 - v)[w(EQTIM)+ T'8w(M) i
+87(1-8)(V)] by

since p([a, BIM) =S/, u(a, b]W) =]a —b|Zi, 0(W;)=|a — b|w(M).
Now (M) <2w(L,) by (4)., so 8T' (M) < éu(EQ2T)M),

[ f@dn @ = A=y ECTMA+8)+ 570~ 8 (V)]

=5"[d+87'(1-8)u(V) by (i)
< u(V)/16 by (v).
By Tchebychev’s inequality, u ({x € V: f(x) =)= iu (V). Define

8= 3 (W, NE(-2T)Mpxs (x)o (W), x€V.

By exactly similar estimates we obtain u({x € V: g(x)=iH=3pu (V). Therefore
f(x), g(x) are simultaneously =: on a set of positive measure, so that V..,
W.... satisfying (5)..+1, (6).+1 may be chosen.

(E) Use (D) and an exhaustion argument to obtain Wy, - - -, W, satisfying (5),,
(6); such that w(EQRT')M,)= n(V)/100. (The argument for E(—2T') is
similar.)

By (4)., 20(L.) > o(M.). Hence

(12) w(EQRT)L,)=2Tw(L,)>T o(M)Ziu(EQT)M,) = %o%)

N =T'L, is an I(T’) base. In (F) below we show that large subsets tN'C (N,
[t|= 8T, are AA™', ¢} invariant. By Lemma 2.8 and (ii), (iii), (iv) there is an
I(T)A tower W C I(T')N' with p(W)>u(I(T")N')(1— e1). Then

1_81 ‘_/

w(W) >4

by (12)

> /‘—4((%) by (A) and (i).
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(F) Invariance of the sets N, |t|= 8T:
Let

Q:={g€Q: ,(AA")gCQ,V|t|=T(+25)},

Q:={qE€Q: .(AA Y, (AA )G C Q,V|t'|=T(1+28),[t|=T1+6)}.
Then 7,(AA ")Q.C Q, for [t|= T(1+ &) and A (Q,) > (1 - B)A(Q,) by (ix). Set
M=U W, M=U QWw, i=12
i=1 j=1
L=M-E*QT)M, L =M -E*QT)M, i=1,2.

(13) AA'(t(M,— E*2QT)M))C 1L,

whenever |t — T’ = 8T by choice of Q; and Q.. By Proposition 1.1, g !I(T)W.» =

h X A X n; where u; is the induced measure on W, Therefore w; = A X 7,
(14) w(M2~E*(2T)M)=w(L)—w((Q—Qz) O w nL)
i=1

zo(ll)-w ((O - Q) ,L:J1 "V.)

Z w(L)— Bw(M).
Since L, is an E(2T) base, Proposition 1.2 shows that

w(E*2T)(Q - Q)W,NL)=o(Q — Q)W NE*(—2T)L,)

=w(Q-0)W),
w (E*(ZT)(Q -Q) U win Ll) = 2 ©((Q - Q)W)

= 83, o(W)= Ba(M),

(15)  w(L)= (M- E*CT)M)+ o (E*(ZT)(Q -0).U win L,)

= w(L)+ Bw(M).
By (14) and (15),

oMy~ E*QT)M) _ o(L)=Bo(M) _ .
(L) 2 (D) T Bo (M) = 1-¢1 by (viii) and (4)..
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This with (13) gives the invariance of the sets tL, = tN’ which are close in size to
IN.

§3. Piecewise continuous extensions of R-groups

We show how to modify §2 to prove Theorem 1.8. a will be a fixed piecewise
continuous section ¢: L > G, and if ECL, A CH we write EA ={a(e)a:
a €E, a € A}. Using a toidentify G with L X H we see that v = h X A is a left
Haar measure on G. 7,(h)=a(p) 'ha(p), p €EL. If H is discrete 7 is the
identity in a neighborhood of e and this replaces the assumption that A is
continuous. The analogue of Lemma 2.1 will be Lemma 2.1*, etc.

Case 1: L = K, compact

Lemma 2.3*. To prove that G is an R -group it is sufficient to show that KA is
an R -set whenever A C H is an R-set.

Proor. Suppose E, F C G are compact and £ >0 is given. Let E, = E N kH.
b‘: d > a(p(d))'d is continuous on p ' (K;)N E, where p: G = K is projec-
tion. Therefore ®(E) = U, cxk 'E, is relatively compact.

Let F, = FNkH, 8(k,k')= a(k'k)a(k)'. Then F.. = B(k, k)G (k, k') where
Gk, kYCH. ¥:f,k » r(k)a(k)a(p(f)k) )f is continuous on F N p~'(K,) X
K; and hence W(F X K) = U, ,.ex 7(k)G(k, k') is relatively compact. Choose an
R-set B C H so that ®(E)C B and B is ¥(F X K), ¢ invariant. Then KB D E
and KB is open and relatively compact.

v({xEKB:FXZKB})=J A(x € kB: FxZ KB})dk
=f A(x € B: 7(k)G (k, k')x & B Vk' € K)dk

<eg J A(B)dk
= gv(KB).

Sets KB can therefore be chosen arbitrarily large and arbitrarily left invariant.

LemMmAa 2.8*. Let A C H be an R -set and let € >0 be given. Let VCXbeak
tower on a base V such that, with respect to the induced measure w on V, the sets
kV are all AA™', €/4 invariant. Then there is a KA tower W CV with
p(W)>u(V)(1-¢).
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REMARK. The induced measure w on V has only been defined when V is of
the form BW, B C H, and W is a KB tower. This condition is however always
fulfilled when we apply the Lemma or make other use of the induced measure.
Moreover it is not hard to see that one can modify the proof of Proposition 1.1 to
show that the measure on a K tower is # X » where # is left Haar measure on K
and v is the induced measure. Notice that since K is unimodular, we have
T,n = v in applications of Proposition 1.2.

Proor. The modifications to make in 2.8 are clear.
Lemma 2.8* is a substitute for Proposition 2.5.

PRrROPOSITION 2.6*. There exists a >0 so that for any R-set A C H there is a
symmetric open relatively compact set F = F(A)YC H and 8 = B(A) >0 such that
in any KF, B invariant set Z € B(X) with u(Z)> 0, a KA tower W may be found
with w(W)> ap (Z).

It is obvious how to modify the proof of 1.7 to obtain 1.8 from 2.6* and 2.8*. It
remains to prove 2.6%

ACH is an R-set. Write D ={a(k)a(k’)": k,k'€K}. Let YCH be
compact, symmetric, and let D C KY and K*C KY.

Make the following choices:

Q) e=1-27%

() 0<d<1,87'(3/50+(1-8)8)<1/16,

(i) 0<B<1/3, 2+B)(1-B)<6, 1-B)1-38)>273 (1-B)(1—-¢£,)>
5 (x = B)>(1-&/4)(x + B) for x =4,

(ivy Q'=H a Y’B, 1-(1+B/2)" invariant R-set where

B = U{n(r,(AA™")Y: k'€K,pEa(K)U a(K)},

(v) Q={g€EQ:YqCcQ}

i) 0<y<1,1-6>4%,

(vii)) P C Q compact, A(P)>(1- y)A(Q),

(vili) ECH, CCK symmetric neighborhoods of the identity with
n(PEYECQ VYke€C, and QEC Y’QCQ".

We will show that F(A)= Q'Q'", B(A)= B, a = 1/600 satisfy the require-
ments. We begin by showing that Q is a B, 8 invariant R-set.

{gE Q" Y’ BqC Q'}C{q € Q" Bq C Q}, and so

(g €Q":BqaCQh>(1~-B/2)u(Q) by ()
n(q€Q: BgCQY=(1-B/2)u(Q)-u(Q'-Q)
=(1-8)n(Q)  by(iv)



Vol. 30, 1978 THE ROHLIN TOWER THEOREM 117

Since Q towers almost as much of the space as Q' towers, we now need only
see Q is open. So suppose g, & Q, g, —h € H.1f h € Q' then h & Q. Hence we
may assume ¢. € Q’, since Q' is open. Then 3x. € Y” so that x,g. € Q'. Since
Y? is compact we may find a convergent subsequence x.—>x € Y*. Then
Xngn — xh and xh & Q' since Q' is open. Therefore h € Q, so Q is open.

(A)* Proceed as in (A) to find a Q tower V with w(V)>pu(Z)2? and
KQ'VCZ

(B)* The proof of Lemma 2.11 is almost unchanged. J C C is no longer
restricted; however we now require W to be a KQ' base. Choose W, V, J,
satisfying (1), (2), (3) of (B). By (A)*, KQW; C Z. Set D* = D —{e}, W, = QW,
ﬁ/i =Q'W.

(C)* Suppose W,,:--, W,, have been chosen such that

4): 2w (L) > (1 - Blo{(M), i=1,---\m
where M, = U:-=1 W, L. = M, — D *M,. Notice that the translates of L; by K are

disjoint.
Suppose that W,,,, satisfies

(Shm 1 46 (Wit N D*M, ) < & (W)
Then (4)...: holds also. The estimates are those of (C) except

(8)* o(L. "D*W,.,)= @(W,.,€K'L.) by Proposition 1.2
éw(Wm+1ﬂD*Mm)
S @0(Wnin ND*M,)+ @ (Woay — Witi)
<3 (Woar) + B0 (W)

(D)* W, may be chosen satisfying (5); until (KM, )= 1/100 (V). Suppose
W, i=1,---,m, satisfy (5) and 100 u(KM..) < u (V). Write M = M,,. Set

fx)= 2{ (W, N DM)yxv (x)o (W)™, xE V.

Then 2.6 (9) follows as before.
(10)* «(DM N W)= o(KYM N W,)

= w(kKKYM N kW)= o(KY*M N kW,),
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(11)* p(V.NKY’M) = u(V, N KY*M N JW,)
= f o(V, N KY*M N kW,)dk
A

=f o(KY*M N kW,)dk
R

—f o(KY*M N (kW — V,))dk

2 e, (DM N W)
—(1-8)ew(W,) by (3) and (10)*;

[, 100 x)= 5, w0(We 0 DM (T (W)

g,

A

) o(W.NDM)e(1-y)" by (9)

iIA
i

]
-

2, A=y w(ViNKY’M)+&,(1- 8)o(W)] by (11)*

=(1-y) [k (KY’M)+(1-8)/6u(V)] by (9);

WY M) 3 w(KY*W)
égu(Ko'W,)ég(H%B)w(v‘vi) by (iv)

=(1+BDe(M)S +BI1-) 3 w(Ly) by (©
= 2+ B)/(1— B)u(KL)= 2+ B)/(1- B (KM).
Hence
[, 1@)du @)= 1=l + B~ B)100+ (1 - 51811 ()

<u (V)16 by (i), (iii) and (vi).

We conclude as in (D) that we may choose V., .., W,.., satisfying (5).+1.
(E)* By estimates similar to those of (E), using {4)., (C) and (iii) we obtain

w(KL,) = u(V)/300.

In (F)* we find L, C L, so that w(L,)> (1 - 8)w(L.) and so that the sets kL,,
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k € K, are AA™’, g,/4 invariant. By 2.8* there is a KA tower W C KL, with
n(W)> u(Z)/600.
(F)* Let

Q:={g€Q:7,(AA™)g C Q,Vp Ea(K)Ua(K)7},
Q:={g € Q: 1(7,(AA™)YgC Q,Vk'EK,p Ea(K)Ua(K)™}.

Then
A(Q)>(1- B/DA(Q)  and
AMYQ-Q)=(Q'- Q)= Br(Q).

Set

M=y W, M= U QwW, i=12
L=M-D*M, L.=M-D*M, i=12.

As in (F):

(13)* AA“(k(M;-D*M)CkL,, VkE€K,

(14)* o(M:~D*M)= o(L)— Bo(M),

(15)* w(L,)=w(Ml—D*M)+w(D*(O—Ql) U w..nL,)

<w(l)+ o (Y(o -0) U vm)

Swll)+tow <(YQ - Q) 'L:Jl W.)

=w(l)+ Bo(M).
Hence (M- D*M)/w(L,)Z 1- &:/4 by (14)*, (15)* and (iii).
Case 2: L =R.

It should be clear by now that we can combine the methods of §2 and those of
Case 1 above to prove Theorem 1.8. We note briefly the points at which the
argument is modified.

LeEMMA 2.3**. This is similar to Lemma 2.3*. We work with an interval K CR

which contains p(F) U p(E) and assume K is a union of a finite number of sets on
which a is continuous.
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ProposITION 2.5**. With the notation of 2.5, K, no longer determines an
I(T(1+ 8))B tower. Instead we replace B by a larger set B’ which is chosen
sufficiently invariant under a large set in H to ensure that {a(S:)x: x € V'} form an
I(T)B tower which fills most of the space V, where S, is the left endpoint of K.

The proofs of 1.7, 2.7, 2.8, 2.10, 2.11 are unchanged. The remark following
2.8* still applies.

ProposiTionN 2.6**, In (C) we replace the set W,...N EQT)M,, by W, N
EQRT)YM.,, Y C H being chosen to ensure M — E(2T)YM has disjoint translates
under E(2T), and obtain estimates as in the compact case. The estimates of (D)
are as in Case 1 and we treat E(— 2T) similarly. In (E) we must ensure T'L, is an
I(T") base and this may be done by requiring Q to be sufficiently invariant. The
estimates of (F} then follow as in Case 1.

§4. Hyperfiniteness of group actions

A measure preserving action of a group G on a probability space X, u
generates a natural equivalence relation on X. An equivalence relation on X is
said to be countable (finite) if there are at most countably (finitely) many points
in each orbit, and hyperfinite if it is an increasing union of finite relations (cf. e.g.
[6]). It is known that all free measure class preserving actions of discrete solvable
groups generate hyperfinite equivalence relations [1]. To generalize these ideas
for continuous groups and uncountable relations we make the following
definitions (see also [4]): An equivalence relation R is countably hyperfinite if it
is the union of an increasing sequence of finite relations. Let J, ={1,---,n},
n €N, J,=[0,1]. A relation R on X, g is cyclic if

1) X=|J Y.xJ, where Y, € B(X),
i=0

the union is disjoint, and the isomorphism is measure theoretic in the sense that
there is a measure A, on Y, so that A, X h,=pu
measure on J,, and if

v.xs, Where h, is Lebesgue

2 x~yx=(nj) Y=Unis) where y, €'Y, and j,, j. € J..

A relation R is hyperfinite if
(1) 3E € B(X) such that the saturation of E is conull in X and R [E is
countabie,

(2) R is the union of an increasing sequence of cyclic relations.

ProposIiTION 4.1. Let R be a hyperfinite relation on a measure space X, u and
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let E € B(X) have conull saturation such that R ,E is countable. Then R ’E is
countably hyperfinite. Conversely, if 3E € B (X) with conull saturation such that
R IE is countably hyperfinite then R is hyperfinite.

Proor. The details are fairly straightforward. The result is in [4].

THEOREM 4.2. Let G be al.c.s.c. R-group, and X be a standard Borel G space
on which G acts freely preserving a probability measure . Then the relation R
generated by the G action is hyperfinite.

Proor. By [4], 3E € B(X) with conull saturation and so that R ,E is
countable. Let Bo={e}C B;C B:C --- be a sequence of compact sets with
Ui..B =G. Suppose inductively we have relations R,,i =0, -+, n on X, and
compact A; C G, such that

(1) R.D R..1D - -2 R, where R, is the trivial relation,

(2) R; is cyclic, i=1,---,n,

B rxeX: AL AZLXxZ Rx)<2 i=1,--+n,

4 x~y>x=hy, h€EAAT,i=1,---,n,

) BBCA,i=1,--",n

These conditions certainly hold for Ry, B, A, = {€}. We construct R..i, An.1.
Choose A,.; tobe an A,A',2 "*? invariant R-set with A, U B,.; C A,.,. Find
an A,., tower E C X on a base E such that u(E)>1-2"""2, Set

C={g€A...hg€A,..VhEAA}

Let Y be the saturation of CE under R,. If y € Y, then y ~,gx where g € C,
x €EE. By (4), y = hgx, h € A,A". By choice of C, y € E. Therefore Y C E.
Define R,.; on Y to be the relation x ~,.,y & x = ax,, y = bx, where
a,b € A,,1, xo€ E. Define R,,, on X — Y to be the relation R,. R,.; is clearly
cyclic by Proposition 1.1. Suppose x,y € Y and x ~,y. Then x = az, y = bz,
z€CE, a,beE AA,'. z =gz, where g€ C and z,€ E. Thus x = agz,, y =
bgz,, and ag,bg € A,.,, S0 X ~..;y. Hence R, C R,.1.

Suppose x ~,.;y. f x,y EX —Y then x ~,y and so x =hy, h€EAA,'C
A.nALL If x,y€Y then x =az, y=bz where z €EE, a,b € A,... Then

=ab7'y.

xECE 2 AA;'x CR.1x.
Hence
p(x€X: AL A XZ Ruyix) S pu(X = CE)=270"2 4270 = 270D,

R..1, Aper now satisfy (1)~(5). It is clear that R = U, R, so that R is
hypertfinite.
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Any countably hyperfinite equivalence relation arises from a Z action, by [6]
theorem 4.1. The corresponding result in the uncountable case is

ProrosiTION 4.3. Let R be a hyperfinite equivalence relation on a space X, u,
such that there are uncountably many points in each orbit. Then R is generated by a

flow.

Proor. Choose E € B(X) with conull saturation so that R [ is countable
and hence hyperfinite by Proposition 3.1. Let p: X — E be any measurable map
such that p(x)~x a.a. x €EX. Let Ec={e € E: p~'(e)=[0, 1]} (= meaning a
measure theoretic isomorphism of [0, 1] with Lebesgue measure and p '(e) and
the induced fibre measure). Clearly p,(x)(Eo)>0. Find also a map
q: p~'(E — Eo)—> E, preserving R. It is clear that X =1XE, (cf. e.g. [15]
appendix) and that (t,x)~(s,x) Vt,s €I, x € E,. Find a transformation T
generating R IEO. The flow built on Eo, p,u, T under the constant function 1
generates R.
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